×

A preconditioned iterative method for coupled fractional partial differential equation in European option pricing. (English) Zbl 07919420

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
15B05 Toeplitz, Cauchy, and related matrices
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
91G20 Derivative securities (option pricing, hedging, etc.)
91G80 Financial applications of other theories
91G60 Numerical methods (including Monte Carlo methods)
35Q91 PDEs in connection with game theory, economics, social and behavioral sciences

References:

[1] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Pol. Econ. 81 (1973), no. 3, 637-654, DOI: https://doi.org/10.1086/260062. · Zbl 1092.91524
[2] R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manage. Sci. 4 (1973), 141-183, DOI: https://doi.org/10.2307/3003143. · Zbl 1257.91043
[3] S. G. Kou, A jump-diffusion model for option pricing, Manage. Sci. 48 (2002), no. 8, 955-1101, DOI: https://doi.org/10.1287/mnsc.48.8.1086.166. · Zbl 1216.91039
[4] P. Carr and L. Wu, The finite moment log stable process and option pricing, J. Finance 58 (2003), no. 2, 753-777, DOI: https://doi.org/10.1111/1540-6261.00544.
[5] P. Carr, H. Geman, D. B. Madan, and M. Yor, The fine structure of asset returns: An empirical investigation, J. Bus. 75 (2002), no. 2, 305-332, DOI: https://doi.org/10.1086/338705.
[6] S. I. Boyarchenko and S. Z. Levendorskiĭ, Non-Gaussian Merton-Black-Scholes Theory, Statistical Science & Applied Probability, Vol. 9, World Scientific, Singapore, 2002. · Zbl 0997.91031
[7] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud. 6 (1993), no. 2, 327-343, DOI: https://doi.org/10.1093/rfs/6.2.327. · Zbl 1384.35131
[8] R. J. Elliott and C. J. U. Osakwe, Option pricing for pure jump processes with Markov switching compensators, Finance Stoch. 10 (2006), no. 2, 250-275, DOI: https://doi.org/10.1007/s00780-006-0004-6. · Zbl 1101.91034
[9] P. Asiimwe, C. W. Mahera, and O. Menoukeu-Pamen, On the price of risk under a regime switching CGMY process, Asia-Pac. Financ. Mark. 23 (2016), 305-335, DOI: https://doi.org/10.1007/s10690-016-9219-5. · Zbl 1418.91499
[10] D. Hainaut and O. Le Courtois, An intensity model for credit risk with switching Lévy processes, Quant. Finance 14 (2014), no. 8, 1453-1465, DOI: https://doi.org/10.1080/14697688.2012.756583. · Zbl 1402.91846
[11] G. Deelstra and M. Simon, Multivariate European option pricing in a Markov-modulated Lévy framework, J. Comput. Appl. Math. 317 (2017), 171-187, DOI: https://doi.org/10.1016/j.cam.2016.11.040. · Zbl 1386.91139
[12] S. Lei, W. Wang, X. Chen, and D. Ding, A fast preconditioned penalty method for American options pricing under regime-switching tempered fractional diffusion models, J. Sci. Comput. 75 (2018), no. 3, 1633-1655, DOI: https://doi.org/10.1007/s10915-017-0602-9. · Zbl 1406.91484
[13] X. Li, P. Lin, X. C. Tai, and J. Zhou, Pricing two-asset options under exponential Lévy model using a finite element method, arXiv:1511.04950v1, 2015, https://doi.org/10.48550/arXiv.1511.04950. · doi:10.48550/arXiv.1511.04950
[14] X. He and S. Lin, A fractional Black-Scholes model with stochastic volatility and European option pricing, Expert Syst. Appl. 178 (2021), 114983, DOI: https://doi.org/10.1016/j.eswa.2021.114983.
[15] X. Chen, D. Ding, S. Lei, and W. Wang, An implicit-explicit preconditioned direct method for pricing options under regime-switching tempered fractional partial differential models, Numer. Algorithms 87 (2021), no. 3, 939-965, DOI: https://doi.org/10.1007/s11075-020-00994-7. · Zbl 1476.65167
[16] S. Lin and X. J. He, A regime switching fractional Black-Scholes model and European option pricing, Commun. Nonlinear Sci. Numer. Simul. 85 (2020), 105222, DOI: https://doi.org/10.1016/j.cnsns.2020.105222. · Zbl 1448.91299
[17] A. Cartea and D. del Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Phys. A 374 (2007), no. 2, 749-763, DOI: https://doi.org/10.1016/j.physa.2006.08.071.
[18] Z. Zhou, J. Ma, and X. Gao, Convergence of iterative Laplace transform methods for a system of fractional PDEs and PIDEs arising in option pricing, East Asian J. Appl. Math. 8 (2018), no. 4, 782-808, DOI: https://doi.org/10.4208/eajam.130218.290618. · Zbl 1462.35012
[19] W. Chen, X. Xu, and S. P. Zhu, Analytically pricing European-style options under the modified Black-Scholes equation with a spatial-fractional derivative, Quart. Appl. Math. 72 (2014), no. 3, 597-611, DOI: https://doi.org/10.1090/S0033-569X-2014-01373-2. · Zbl 1299.91139
[20] W. Chen and S. Wang, A penalty method for a fractional order parabolic variational inequality governing American put option valuation, Comput. Math. Appl. 67 (2014), no. 1, 77-90, DOI: https://doi.org/10.1016/j.camwa.2013.10.007. · Zbl 1386.91160
[21] X. Guo, Y. Li, and H. Wang, Tempered fractional diffusion equations for pricing multi-asset options under CGMYe process, Comput. Math. Appl. 76 (2018), no. 6, 1500-1514, DOI: https://doi.org/10.1016/j.camwa.2018.07.002. · Zbl 1431.91395
[22] M. Chen and W. Deng, High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights, SIAM J. Sci. Comput. 37 (2015), no. 2, A890-A917, DOI: https://doi.org/10.1137/14097207X. · Zbl 1317.65198
[23] R. H. Chan and X. Jin, An introduction to iterative Toeplitz solvers, Fundamentals of Algorithms, Vol. 5, SIAM, Philadelphia, 2007. · Zbl 1146.65028
[24] S. L. Lei, D. Fan, and X. Chen, Fast solution algorithms for exponentially tempered fractional diffusion equations, Numer. Methods Partial Differential Equations 34 (2018), no. 4, 1301-1323, DOI: https://doi.org/10.1002/num.22259. · Zbl 1407.65112
[25] M. S. Bartlett, An inverse matrix adjustment arising in discriminant analysis, Ann. Math. Statist. 22 (1951), 107-111, DOI: https://doi.org/10.1214/aoms/1177729698. · Zbl 0042.38203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.