×

Homotopy cartesian squares in extriangulated categories. (English) Zbl 1527.18014

The notion of homotopy cartesian square first appeared in the study by B. J. Parshall and L. L. Scott [in: Algebra, Proc. Workshop, Ottawa/Can. and Moosonee/Can. 1987, Math. Lect. Note Ser., Expo. Math., CRAF, Carleton Univ. 3, 105 p. (1988; Zbl 0711.18002)]. In this paper under review, the authors study homotopy cartesian squares in extriangulated categories.
Let \((\mathcal{C},\mathbb{E},\mathfrak{s})\) be an extriangulated category. Given a composition of two commutative squares in \(\mathcal{C}\), the authors showed that if two commutative squares are homotopy cartesian, then their composition is also a homotopy cartesian square. This covers the result by S. Mac Lane [Categories for the working mathematician. Cham: Springer (1971; Zbl 0232.18001)] for abelian categories and by J. D. Christensen and M. Frankland [J. Pure Appl. Algebra 226, No. 3, Article ID 106846, 33 p. (2022; Zbl 1475.18018)] for triangulated categories.

MSC:

18G80 Derived categories, triangulated categories
18E10 Abelian categories, Grothendieck categories

References:

[1] A. Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. 9 (1957), no. 2, 119-221, DOI: https://doi.org/10.2748/tmj/1178244839. · Zbl 0118.26104
[2] J. Verdier, Des catégories dérivées des catégories abéliennes, With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis, Astérisque No. 239, 1996. · Zbl 0882.18010
[3] B. J. Parshall and L. L. Scott, Derived categories, quasi-hereditary algebras, and algebraic groups, Carlton University Mathematical Notes 3 (1988), 1-104. · Zbl 0711.18002
[4] A. Neeman, Triangulated categories, Annals of Mathematics Studies, Vol. 148, Princeton University Press, Princeton, 2001. · Zbl 0974.18008
[5] H. Nakaoka and Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom. Différ. Catég. 60 (2019), no. 2, 117-193. · Zbl 1451.18021
[6] P. Zhou and B. Zhu, Triangulated quotient categories revisited, J. Algebra 502 (2018), 196-232, DOI: https://doi.org/10.1016/j.jalgebra.2018.01.031. · Zbl 1388.18014
[7] J. Hu, D. Zhang, and P. Zhou, Proper classes and Gorensteinness in extriangulated categories, J. Algebra 551 (2020), 23-60, DOI: https://doi.org/10.1016/j.jalgebra.2019.12.028. · Zbl 1433.18004
[8] B. Zhu and X. Zhuang, Tilting subcategories in extriangulated categories, Front. Math. China 15 (2020), no. 1, 225-253, DOI: https://doi.org/10.1007/s11464-020-0811-7. · Zbl 1440.18026
[9] H. Nakaoka and Y. Palu, External Triangulation of the Homotopy Category of Exact Quasi-category, arXiv:2004.02479, 2020, DOI: https://doi.org/10.48550/arXiv.2004.02479.
[10] O. Iyama, H. Nakaoka, and Y. Palu, Auslander-Reiten Theory in Extriangulated Categories, arXiv.1805.03776, 2018, DOI: https://doi.org/10.48550/arXiv.1805.03776.
[11] J. He, Extensions of covariantly finite subcategories revisited, Czechoslovak Math. J. 69 (144) (2019), no. 2, 403-415, DOI: https://doi.org/10.21136/CMJ.2018.0338-17. · Zbl 1513.18011
[12] S. Mac Lane, Categories for the working mathematician, Second Edition, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York, 1998. · Zbl 0906.18001
[13] J. D. Christensen and M. Frankland, On good morphisms of exact triangles, J. Pure Appl. Algebra 226 (2022), no. 3, 106846, DOI: https://doi.org/10.1016/j.jpaa.2021.106846. · Zbl 1475.18018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.