×

The generalized Blasius equation revisited. (English) Zbl 1144.76307

Summary: The main subject of this paper is the model \((|f^{\prime\prime}|^{n-1}f^{\prime\prime})^{\prime}+\frac{1}{n+1}ff^{\prime\prime}=0,f(0)=f^{\prime}(0)=0, f^{\prime}(\infty)=1\), arising in the study of a 2D laminar boundary-layer with power-law viscosity, \(f=f(\eta) \) is the non-dimensional stream function and \(n>0\). Besides proving the existence and uniqueness results, we investigate the precise behavior of \(f\) for small and large \(\eta\). In particular, for \(n>1\) we show that \(f(\eta)\) is linear for \(\eta \geq \eta_0 >0\). This means that in original \((x,y)\) coordinates, the domain \(y \geq a_0x^{\frac{1}{n+1}}, a_0 = \text{const.}\), the velocities \(u = \text{const.}, v=0\) and the boundary-layer is the domain \(y < a_0x^{\frac{1}{n+1}}\) (“spatial localization of the layer”).

MSC:

76D10 Boundary-layer theory, separation and reattachment, higher-order effects
34B40 Boundary value problems on infinite intervals for ordinary differential equations
76A05 Non-Newtonian fluids
Full Text: DOI

References:

[1] Acrivos, A.; Shah, M. J.; Peterson, E. E., Momentum and heat transfer in laminar boundary flow of non-Newtonian fluids past external surfaces, AIChE J., 6, 312-317 (1960)
[2] Schowalter, W. R., The application of boundary layer theory to power-law pseudoplastic fluids: Similar solutions, AIChE J., 6, 24-28 (1960)
[3] Teipel, I., Discontinuities in boundary-layer problems of power-law fluids, Mech. Res. Comm., 269-274 (1974) · Zbl 0346.76028
[4] Bird, R. B., Non-Newtonian behavior of polymeric liquids, Physica A: Statist. Theor. Phys., 118, 1-3, 3-16 (1988) · Zbl 0518.76003
[5] Tanner, R. I., Engineering Rheology (1988), Calderon Press: Calderon Press Oxford · Zbl 1171.76301
[6] Barnes, H. A., A brief history of the yield stress, Appl. Rheol., 9, 6, 262-266 (1999)
[7] Pavlov, K. B.; Fedotov, I. A.; Shakhorin, A. P., Structure of laminar boundary layer in non-Newtonian dilatant fluids, Izv. Akad. Nauk SSSR Mekh. Zhid. Gaza, 4, 142 (1981) · Zbl 0502.76006
[8] Denier, J. P.; Dabrowski, P. P., On the boundary-layer equations for power-law fluids, Proc. R. Soc. Lond. A, 460, 3143-3158 (2004) · Zbl 1074.76002
[9] Filipussi, D.; Gratton, J.; Minotti, F., The self-similar laminar boundary layer of power law non-Newtonian fluids, Nuovo Cimento Soc. Ital. Fis. B, 116, 393-402 (2001)
[10] Zheng, L.; Zhang, X.; He, J., Existence and estimate of positive solutions to nonlinear singular boundary value problem in the theory of dilatant non-Newtonian fluids, Math. Comput. Modelling, 45, 3-4, 387-393 (2007) · Zbl 1170.76006
[11] Nachman, A.; Callegari, A., A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., 38, 2, 275-281 (1980) · Zbl 0453.76002
[12] Schlichting, H.; Gersten, K., Boundary Layer Theory (2000), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0940.76003
[13] Barenblatt, G. I., (Scaling, Selfsimilar, and Intermediate Asymptotic. Scaling, Selfsimilar, and Intermediate Asymptotic, Cambridge Text in Applied Mathematics, vol. 14 (1996)) · Zbl 0907.76002
[14] Blasius, H., Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Math. Phys., 56, 1-37 (1908) · JFM 39.0803.02
[15] Zheng, L. C.; Zhang, X. X., Skin friction and heat transfer in power-law fluid laminar boundary layer along a moving surface, Int. J. Heat Mass Transfer, 45, 2667-2672 (2002) · Zbl 1101.76323
[16] Anderson, H. I.; Irgens, F., Gravity-driven film flow of power-law fluids along vertical walls, Non-Newtonian Fluid Mech., 27, 153-172 (1988)
[17] Zhang, Z.; Wang, J.; Shi, W., A boundary layer problem arising in gravity-driven laminar film flow of power-law fluids along vertical walls, ZAMP J. Appl. Math. Phys., 55, 769-780 (2004) · Zbl 1059.76007
[18] Akçay, M.; Yükselen, M. A., Drag reduction of a nonNewtonian fluid by fluid injection on a moving wall, Arch. Appl. Mech., 69, 215-225 (1999) · Zbl 0933.76004
[19] Guedda, M., (Chipot, M., Similarity and Pseudosimilarity Solutions of Degenerate Boundary-Layer Equations. Similarity and Pseudosimilarity Solutions of Degenerate Boundary-Layer Equations, HandBook of Differential Equations, Stationary Partial Differential Equations, vol. 4 (2007)), 17-198, (Chapter 3) · Zbl 1196.35003
[20] Coppel, W. A., On a differential equation of boundary layer theory, Philos. Trans. R. Soc. Lond. Ser. A, 253, 101-136 (1960) · Zbl 0093.19105
[21] Belhachmi, Z.; Brighi, B.; Taous, K., On the concave solutions of the Blasius equation, Acta Math. Univ. Comenian. (N.S.), 69, 2, 199-214 (2000) · Zbl 0972.34015
[22] Scerbina, G. V., On a boundary problem for an equation of Blasius, Sov. Math. Dokl., 2, 1219-1222 (1961) · Zbl 0124.04803
[23] Liao, S. J., A challenging nonlinear problem for numerical techniques, J. Comput. Appl. Math., 181, 467-472 (2005) · Zbl 1071.65112
[24] Callegari, A. J.; Nachman, Some singular nonlinear differential equations arising in boundary layer theory, J. Math. Anal. Appl., 64, 96-105 (1978) · Zbl 0386.34026
[25] Hartmann, P., Ordinary Differential Equations (1964), John Willey & Sons, Inc.: John Willey & Sons, Inc. New-York, London, Sidney · Zbl 0125.32102
[26] Weyl, H., On the differential equations of the simplest boundary-layer problems, Ann. of Math., 43, 381-407 (1942) · Zbl 0061.18002
[27] Ch. Lu, Multiple solutions of a boundary layer problem, Commun. Nonlinear Sci. Numer. Simul., Online September 2005; Ch. Lu, Multiple solutions of a boundary layer problem, Commun. Nonlinear Sci. Numer. Simul., Online September 2005
[28] Guedda, M., Multiple solutions of mixed convection boundary-layer approximations in a porous medium, Appl. Math. Lett., 19, 63-68 (2006) · Zbl 1125.34006
[29] Crocco, L., Lo strato laminare nei gas, Mon. Sci. Aer. Roma. (1946) · JFM 67.1113.02
[30] Wong, J. S.W., On the generalized Emden-Fowler equations, SIAM Rev., 17, 339-360 (1975) · Zbl 0295.34026
[31] Howarth, L., On the solution of the laminar boundary layer equations, Proc. R. Soc. Lond. A, 164, 547-579 (1938) · JFM 64.1452.01
[32] Abbasbandy, S., A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method, Chaos Solitons Fractals, 31, 257-260 (2007)
[33] T. Tajvidi, M. Razzaghi, M. Dehghan, Modified rational Legendre approach to laminar viscous flow over a semi-infnite flat plate, Chaos Solitons Fractals, Online May 2006; T. Tajvidi, M. Razzaghi, M. Dehghan, Modified rational Legendre approach to laminar viscous flow over a semi-infnite flat plate, Chaos Solitons Fractals, Online May 2006 · Zbl 1135.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.