×

Contact tracing-induced Allee effect in disease dynamics. (English) Zbl 1489.92137

Summary: Contact tracing, case isolation, quarantine, social distancing, and other non-pharmaceutical interventions (NPIs) have been a cornerstone in managing the COVID-19 pandemic. However, their effects on disease dynamics are not fully understood. Saturation of contact tracing caused by the increase of infected individuals has been recognized as a crucial variable by healthcare systems worldwide. Here, we model this saturation process with a mechanistic and a phenomenological model and show that it induces an Allee effect which could determine an infection threshold between two alternative states – containment and outbreak. This transition was considered elsewhere as a response to the strength of NPIs, but here we show that they may be also determined by the number of infected individuals. As a consequence, timing of NPIs implementation and relaxation after containment is critical to their effectiveness. Containment strategies such as vaccination or mobility restriction may interact with contact tracing-induced Allee effect. Each strategy in isolation tends to show diminishing returns, with a less than proportional effect of the intervention on disease containment. However, when combined, their suppressing potential is enhanced. Relaxation of NPIs after disease containment – e.g. because vaccination – have to be performed in attention to avoid crossing the infection threshold required to a novel outbreak. The recognition of a contact tracing-induced Allee effect, its interaction with other NPIs and vaccination, and the existence of tipping points contributes to the understanding of several features of disease dynamics and its response to containment interventions. This knowledge may be of relevance for explaining the dynamics of diseases in different regions and, more importantly, as input for guiding the use of NPIs, vaccination campaigns, and its combination for the management of epidemic outbreaks.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology

Software:

epimdr; epimdr2

References:

[1] Abdelrazec, A.; Bélair, J.; Shan, C.; Zhu, H., Modeling the spread and control of dengue with limited public health resources, Mathematical biosciences, 271, 136-145 (2016) · Zbl 1364.92036
[2] Alonso, D.; Dobson, A.; Pascual, M., Critical transitions in malaria transmission models are consistently generated by superinfection, Philosophical Transactions of the Royal Society B, 374, 20180275 (2019)
[3] Berryman, A. A., Principles of Population Dynamics and Their Application (1999), Stanley Thornes: Stanley Thornes Cheltenham, U.K.
[4] Bjørnstad, O. N., Epidemics: models and data using R (2018), Springer · Zbl 1407.92001
[5] Block, P.; Hoffman, M.; Raabe, I. J.; Dowd, J. B.; Rahal, C.; Kashyap, R.; Mills, M. C., Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world, Nature Human Behaviour, 1-9 (2020)
[6] Bubar, K. M.; Reinholt, K.; Kissler, S. M.; Lipsitch, M.; Cobey, S.; Grad, Y. H.; Larremore, D. B., Model-informed COVID-19 vaccine prioritization strategies by age and serostatus, Science, 371, 916-921 (2021)
[7] Carroll, C.; Bhattacharjee, S.; Chen, Y.; Dubey, P.; Fan, J.; Gajardo, Á.; Zhou, X.; Müller, H. G.; Wang, J. L., Time dynamics of COVID-19, Scientific reports, 10, 1-14 (2020)
[8] Chowell, G.; Nishiura, H., Transmission dynamics and control of Ebola virus disease (EVD): a review, BMC medicine, 12, 196 (2014)
[9] Chowell, G.; Tariq, A.; Hyman, J. M., A novel sub-epidemic modeling framework for short-term forecasting epidemic waves, BMC medicine, 17, 164 (2019)
[10] Courchamp, F.; Clutton-Brock, T.; Grenfell, B., Inverse density dependence and the Allee effect, Trends in ecology & evolution, 14, 405-410 (1999)
[11] Dehning, J.; Zierenberg, J.; Spitzner, F. P.; Wibral, M.; Neto, J. P.; Wilczek, M.; Priesemann, V., Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions (2020), Science
[12] Elkington, J.; Begon, M.; Godfray, C.; Hall, A.; de Jong, M.; Gascoyne, S.; Bowers, R.; Briggs, C.; Laurenson, K.; Hails, R., Microparasite group report: persistence of microparasites in natural populations, 123-143 (1995), Ecology of infectious diseases in natural populations. Cambridge University Press: Ecology of infectious diseases in natural populations. Cambridge University Press Cambridge
[13] Ferretti, L.; Wymant, C.; Kendall, M.; Zhao, L.; Nurtay, A.; Abeler-Dörner, L.; Parker, M.; Bonsall, D.; Fraser, C., Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing, Science, 368 (2020)
[14] Fitzpatrick, M. C.; Bauch, C. T.; Townsend, J. P.; Galvani, A. P., Modelling microbial infection to address global health challenges, Nature microbiology, 4, 1612-1619 (2019)
[15] Fitzpatrick, M. C.; Galvani, A. P., Optimizing age-specific vaccination, Science, 371, 890-891 (2021)
[16] Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H. J.T.; Mellan, T. A.; Coupland, H.; Whittaker, C.; Zhu, H.; Berah, T.; Eaton, J. W., Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature, 1-8 (2020)
[17] Funk, S.; Salathé, M.; Jansen, V. A., Modelling the influence of human behaviour on the spread of infectious diseases: a review, Journal of the Royal Society Interface, 7, 1247-1256 (2010)
[18] Gotelli, N. J., A primer of ecology (2008), Sinauer Associates: Sinauer Associates Sunderland
[19] Grantz, K. H.; Lee, E. C.; D’Agostino McGowan, L.; Lee, K. H.; Metcalf, C. J.E.; Gurley, E. S.; Lessler, J., Maximizing and evaluating the impact of test-trace-isolate programs: A modeling study, PLoS medicine, 18, 4, Article e1003585 pp. (2021)
[20] Gros, C.; Valenti, R.; Schneider, L.; Valenti, K.; Gros, D., Containment efficiency and control strategies for the Corona pandemic costs, Scientific reports, 11, 1-13 (2021)
[21] Gross, T.; D’Lima, C. J.D.; Blasius, B., Epidemic dynamics on an adaptive network, Physical review letters, 96, Article 208701 pp. (2006)
[22] Gumel, A., Causes of backward bifurcations in some epidemiological models, Journal of Mathematical Analysis and Applications, 395, 355-365 (2012) · Zbl 1251.34065
[23] Haug, N.; Geyrhofer, L.; Londei, A.; Dervic, E.; Desvars-Larrive, A.; Loreto, V.; Pinior, B.; Thurner, S.; Klimek, P., Ranking the effectiveness of worldwide COVID-19 government interventions, Nature Human Behaviour, 1-10 (2020)
[24] He, X.; Lau, E. H.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y. C.; Wong, J. Y.; Guan, Y.; Tan, X., Temporal dynamics in viral shedding and transmissibility of COVID-19, Nature medicine, 26, 672-675 (2020)
[25] Hellewell, J.; Abbott, S.; Gimma, A.; Bosse, N. I.; Jarvis, C. I.; Russell, T. W.; Munday, J. D.; Kucharski, A. J.; Edmunds, W. J.; Sun, F., Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, The Lancet Global Health. (2020)
[26] Hsiang, S.; Allen, D.; Annan-Phan, S.; Bell, K.; Bolliger, I.; Chong, T.; Druckenmiller, H.; Huang, L. Y.; Hultgren, A.; Krasovich, E.; Lau, P.; Lee, J.; Rolf, E.; Tseng, J.; Wu, T., The effect of large-scale anti-contagion policies on the COVID-19 pandemic, Nature (2020)
[27] Johnson, D. M., Liebhold, A. M., Tobin, P. C., Bjørnstad, O. N., 2006. Allee effects and pulsed invasion by the gypsy moth. Nature, 361-363, doi:doi:10.1038/nature05242.
[28] Kang, D.; Choi, H.; Kim, J. H.; Choi, J., Spatial epidemic dynamics of the COVID-19 outbreak in China, International Journal of Infectious Diseases, 94, 96-102 (2020)
[29] Keeling, M. J.; Rohani, P., Modeling infectious diseases in humans and animals (2011), Princeton University Press · Zbl 1279.92038
[30] Klinkenberg, D.; Fraser, C.; Heesterbeek, H., The effectiveness of contact tracing in emerging epidemics, PloS one, 1, Article e12 pp. (2006)
[31] Laxminarayan, R.; Wahl, B.; Dudala, S. R.; Gopal, K.; Neelima, S.; Reddy, K. J.; Radhakrishnan, J.; Lewnard, J. A., Epidemiology and transmission dynamics of COVID-19 in two Indian states, Science, 370, 691-697 (2020)
[32] Lee, C. K.; Song, H. J.; Bendle, L. J.; Kim, M. J.; Han, H., The impact of non-pharmaceutical interventions for 2009 H1N1 influenza on travel intentions: A model of goal-directed behavior, Tourism Management, 33, 89-99 (2012)
[33] Leung, K.; Wu, J. T.; Leung, G. M., Real-time tracking and prediction of COVID-19 infection using digital proxies of population mobility and mixing, Nature communications, 12, 1-8 (2021)
[34] Lewis, D., Why many countries failed at COVID contact-tracing-but some got it right, Nature, 588, 384-387 (2020)
[35] Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J., Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2), Science, 368, 489-493 (2020)
[36] Lima, M., A link between the North Atlantic Oscillation and measles dynamics during the vaccination period in England and Wales, Ecology letters, 12, 302-314 (2009)
[37] Lloyd-Smith, J. O.; Schreiber, S. J.; Kopp, P. E.; Getz, W. M., Superspreading and the effect of individual variation on disease emergence, Nature, 438, 355-359 (2005)
[38] Maier, B. F.; Brockmann, D., Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China, Science, 368, 742-746 (2020) · Zbl 1478.92209
[39] Markel, H.; Lipman, H. B.; Navarro, J. A.; Sloan, A.; Michalsen, J. R.; Stern, A. M.; Cetron, M. S., Nonpharmaceutical interventions implemented by US cities during the 1918-1919 influenza pandemic, Jama, 298, 644-654 (2007)
[40] Moore, S.; Hill, E. M.; Tildesley, M. J.; Dyson, L.; Keeling, M. J., Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study, The Lancet Infectious Diseases, 21, 793-802 (2021)
[41] Ng, O. T.; Marimuthu, K.; Koh, V.; Pang, J.; Linn, K. Z.; Sun, J.; De Wang, L.; Chia, W. N.; Tiu, C.; Chan, M., SARS-CoV-2 seroprevalence and transmission risk factors among high-risk close contacts: a retrospective cohort study, The Lancet Infectious Diseases, 21, 3, 333-343 (2020)
[42] Omori, R.; Mizumoto, K.; Chowell, G., Changes in testing rates could mask the novel coronavirus disease (COVID-19) growth rate, International Journal of Infectious Diseases, 94, 116-118 (2020)
[43] Peak, C. M.; Childs, L. M.; Grad, Y. H.; Buckee, C. O., Comparing nonpharmaceutical interventions for containing emerging epidemics, Proceedings of the National Academy of Sciences, 114, 4023-4028 (2017)
[44] Peak, C. M.; Kahn, R.; Grad, Y. H.; Childs, L. M.; Li, R.; Lipsitch, M.; Buckee, C. O., Individual quarantine versus active monitoring of contacts for the mitigation of COVID-19: a modelling study, The Lancet Infectious Diseases, 20, 1025-1033 (2020)
[45] Pei, S.; Kandula, S.; Shaman, J., Differential effects of intervention timing on COVID-19 spread in the United States, Science advances, 6, eabd6370 (2020)
[46] Prather, K. A.; Wang, C. C.; Schooley, R. T., Reducing transmission of SARS-CoV-2, Science, 368, 1422-1424 (2020)
[47] Roosa, K.; Lee, Y.; Luo, R.; Kirpich, A.; Rothenberg, R.; Hyman, J.; Yan, P.; Chowell, G., Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020, Infectious Disease Modelling, 5, 256-263 (2020)
[48] Royama, T., Analytical Population Dynamics (1992), Chapman & Hall: Chapman & Hall London
[49] Royama, T., Animal Population Ecology: An Analytical Approach (2021), Cambridge University Press
[50] Ruktanonchai, N. W.; Floyd, J.; Lai, S.; Ruktanonchai, C. W.; Sadilek, A.; Rente-Lourenco, P.; Ben, X.; Carioli, A.; Gwinn, J.; Steele, J., Assessing the impact of coordinated COVID-19 exit strategies across Europe, Science, 369, 1465-1470 (2020)
[51] Scheffer, M., Critical Transitions in Nature and Society (2009), Princeton University Press: Princeton University Press Princeton
[52] Siegenfeld, A. F.; Taleb, N. N.; Bar-Yam, Y., Opinion: What models can and cannot tell us about COVID-19, Proceedings of the National Academy of Sciences, 117, 16092-16095 (2020)
[53] Taylor, C. M.; Hastings, A., Allee effects in biological invasions, Ecology Letters, 8, 895-908 (2005)
[54] Tobin, P. C.; Whitmire, S. L.; Johnson, D. M.; Bjørnstad, O. N.; Liebhold, A. M., Invasion speed is affected by geographical variation in the strength of Allee effects, Ecology Letters, 10, 36-43 (2007)
[55] Turchin, P., Complex population Dynamics: a theoretical/empirical synthesis (2003), Princeton University Press: Princeton University Press New Jersey · Zbl 1062.92077
[56] Viboud, C.; Simonsen, L.; Chowell, G., A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks, Epidemics, 15, 27-37 (2016)
[57] Walker, P., Whittaker, C., Watson, O., Baguelin, M., Ainslie, K., Bhatia, S., Bhatt, S., Boonyasiri, A., Boyd, O., Cattarino, L., 2020a. Report 12: The global impact of COVID-19 and strategies for mitigation and suppression.
[58] Walker, P. G.; Whittaker, C.; Watson, O. J.; Baguelin, M.; Winskill, P.; Hamlet, A.; Djafaara, B. A.; Cucunubá, Z.; Mesa, D. O.; Green, W., The impact of COVID-19 and strategies for mitigation and suppression in low-and middle-income countries, Science, 369, 413-422 (2020) · Zbl 1478.92234
[59] Weitz, J. S.; Park, S. W.; Eksin, C.; Dushoff, J., Awareness-driven behavior changes can shift the shape of epidemics away from peaks and toward plateaus, shoulders, and oscillations, Proceedings of the National Academy of Sciences, 117, 32764-32771 (2020)
[60] Wu, K., Darcet, D., Wang, Q., Sornette, D., 2020. Generalized logistic growth modeling of the COVID-19 outbreak in 29 provinces in China and in the rest of the world. arXiv preprint arXiv:2003.05681.
[61] Yang, J.; Marziano, V.; Deng, X.; Guzzetta, G.; Zhang, J.; Trentini, F.; Cai, J.; Poletti, P.; Zheng, W.; Wang, W.; Wu, Q.; Zhao, Z.; Dong, K.; Zhong, G.; Viboud, C.; Merler, S.; Ajelli, M.; Yu, H., Despite vaccination, China needs non-pharmaceutical interventions to prevent widespread outbreaks of COVID-19 in 2021, Nature Human Behaviour (2021)
[62] Zhang, Y.; Li, Y.; Wang, L.; Li, M.; Zhou, X., Evaluating transmission heterogeneity and super-spreading event of COVID-19 in a metropolis of China, International Journal of Environmental Research and Public Health, 17, 3705 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.