×

Contact impact forces at discontinuous 2-DOF vibroimpact. (English) Zbl 1433.70037

Summary: Dynamic behaviour of contact impact forces in strongly nonlinear discontinuous vibroimpact system is studying. Contact impact force is one of the most significant vibroimpact system characteristics. We investigate the 2-DOF vibroimpact system by numerical parameter continuation method in conjunction with shooting and Newton-Raphson methods. We simulate the impact by nonlinear contact interactive force according to Hertz’s contact law. This paper is the continuation of the previous works [the authors et al., Stability and Bifurcations Analysis for 2-DOF Vibroimpact System by Parameter Continuation Method. Part I: Loading Curve. J. Appl. Nonlin. Dyn. 4, No. 4, 357–370 (2015; doi:10.5890/JAND.2015.11.003), Part 2: Frequency-Amplitude response. ibid. 5, No. 3, 269–281 (2016; doi:10.5890/JAND.2016.09.002)]. We have determined the instability zones and bifurcations points for loading curves In Part I and frequency-amplitude response in Part II under variation of excitation amplitude and frequency. In this paper we investigate the behaviour of contact forces at bifurcation points particularly at discontinuous bifurcation points where set-valued Floquet multipliers cross the unit circle by jump that is their moduli becoming more than unit by jump. It is phenomenon unique for nonsmooth systems with discontinuous right-hand side. We observe also the contact forces increase at \( nT\)-periodical multiple impacts regimes. We also learn the change of contact forces behaviour when the impact between system bodies became the soft one due the change of system parameters.

MSC:

70K50 Bifurcations and instability for nonlinear problems in mechanics
70K43 Quasi-periodic motions and invariant tori for nonlinear problems in mechanics
37M20 Computational methods for bifurcation problems in dynamical systems
65P30 Numerical bifurcation problems
65P40 Numerical nonlinear stabilities in dynamical systems
Full Text: DOI

References:

[1] Bazhenov, V. A., Lizunov, P. P., Pogorelova, O. S., Postnikova, T. G., & Otrashevskaia, V. V. (2015). Stability and Bifurcations Analysis for 2-DOF Vibroimpact System by Parameter Continuation Method. Part I: Loading Curve. Journal of Applied Nonlinear Dynamics, 4(4), 357-370.; Bazhenov, V. A.; Lizunov, P. P.; Pogorelova, O. S.; Postnikova, T. G.; Otrashevskaia, V. V., Stability and Bifurcations Analysis for 2-DOF Vibroimpact System by Parameter Continuation Method. Part I: Loading Curve, Journal of Applied Nonlinear Dynamics, 4, 4, 357-370 (2015) · doi:10.5890/JAND.2015.11.003
[2] Bazhenov, V. A., Lizunov, P. P., Pogorelova, O. S., Postnikova (2016) Numerical Bifurcation Analysis of Discontinuous 2-DOF Vibroimpact System. Part 2: Frequency-Amplitude response. Journal of Applied Nonlinear Dynamics, 5(3),(in press).; Bazhenov, V. A.; Lizunov, P. P.; Pogorelova, O. S.; Postnikova, Numerical Bifurcation Analysis of Discontinuous 2-DOF Vibroimpact System. Part 2: Frequency-Amplitude response, Journal of Applied Nonlinear Dynamics, 5, 3 (2016) · Zbl 1433.70037
[3] Jeffrey, M. R., Champneys, A. R., Di Bernardo, M., & Shaw, S. W. (2010). Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator. Physical Review E, 81(1), 016213.; Jeffrey, M. R.; Champneys, A. R.; Di; Bernardo, M.; Shaw, S. W., Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator, Physical Review E, 81, 1 (2010) · doi:10.1103/PhysRevE.81.016213
[4] Bernardo, M., Budd, C., Champneys, A. R., & Kowalczyk, P. (2008). Piecewise-smooth dynamical systems: theory and applications (Vol. 163). Springer Science & Business Media.; Bernardo, M.; Budd, C.; Champneys, A. R.; Kowalczyk, P., Piecewise-smooth dynamical systems: theory and applications, Springer Science & Business Media, 163 (2008) · Zbl 1146.37003 · doi:10.1007/978-1-84628-708-4
[5] Luo, A. C., & Guo, Y. (2012), Vibro-impact Dynamics. John Wiley & Sons. ISBN:978-1-118-35945-7.; Luo, A. C.; Guo, Y., Vibro-impact Dynamics, John Wiley & Sons (2012) · Zbl 1345.70002
[6] Leine, R. I., & Van Campen, D. H. (2002), Discontinuous bifurcations of periodic solutions. Mathematical and computer modelling, 36(3), 259-273.; Leine, R. I.; Van Campen, D. H., Discontinuous bifurcations of periodic solutions, Mathematical and computer modelling, 36, 3, 259-273 (2002) · Zbl 1046.34016 · doi:10.1016/S0895-7177(02)00124-3
[7] Seydel, R. (2010), Practical bifurcation and stability analysis. New York: Springer.; Seydel, R., Practical bifurcation and stability analysis (2010) · Zbl 1195.34004 · doi:10.1007/978-1-4419-1740-9
[8] Ivanov, A. P. (2012), Analysis of discontinuous bifurcations in nonsmooth dynamical systems. Regular and Chaotic Dynamics, 17(3-4), 293-306.; Ivanov, A. P., Analysis of discontinuous bifurcations in nonsmooth dynamical systems, Regular and Chaotic Dynamics, 17, 3-4, 293-306 (2012) · Zbl 1262.37023 · doi:10.1134/S1560354712030069
[9] Leine, R. I., Van Campen, D. H., & Van de Vrande, B. L. (2000), Bifurcations in nonlinear discontinuous systems. Nonlinear dynamics, 23(2), 105-164.; Leine, R. I.; Van Campen, D. H.; de Vrande, B. L., Bifurcations in nonlinear discontinuous systems, Nonlinear dynamics, 23, 2, 105-164 (2000) · Zbl 0980.70018 · doi:10.1023/A:1008384928636
[10] Kowalczyk, P., di Bernardo, M., Champneys, A. R., Hogan, S. J., Homer, M., Piiroinen, P. T., Kuznetsov, Yu A. & Nordmark, A. (2006). Two-parameter discontinuity-induced bifurcations of limit cycles: classification and open problems. International Journal of bifurcation and chaos, 16(03), 601-629.; Kowalczyk, P.; di Bernardo, M.; Champneys, A. R.; Hogan, S. J.; Homer, M.; Piiroinen, P. T.; Kuznetsov, Yu A.; Nordmark, A., Two-parameter discontinuity-induced bifurcations of limit cycles: classification and open problems, International Journal of bifurcation and chaos, 16, 3, 601-629 (2006) · Zbl 1141.37341 · doi:10.1142/S0218127406015015
[11] di Bernardo, M., Budd, C. J., Champneys, A. R., Kowalczyk, P., Nordmark, A. B., Tost, G. O., & Piiroinen, P. T. (2008), Bifurcations in nonsmooth dynamical systems.SIAM review, 629-701.; di Bernardo, M.; Budd, C. J.; Champneys, A. R.; Kowalczyk, P.; Nordmark, A. B.; Tost, G. O.; Piiroinen, P. T., Bifurcations in nonsmooth dynamical systems, SIAM review, 629-701 (2008) · Zbl 1168.34006 · doi:10.1137/050625060
[12] Brogliato, B. (1999), Nonsmooth mechanics: Models, dynamics and control. Springer Science & Business Media.; Brogliato, B., Nonsmooth mechanics: Models, dynamics and control, Springer Science & Business Media (1999) · Zbl 0917.73002 · doi:10.1007/978-1-4471-0557-2
[13] Brogliato, B. (Ed.), (2000), Impacts in mechanical systems: analysis and modelling (Vol. 551). Springer Science & Business Media.; Brogliato, B., Impacts in mechanical systems: analysis and modelling, Springer Science & Business Media, 551 (2000) · Zbl 0972.00062 · doi:10.1007/3-540-45501-9
[14] Alzate, R. (2008), Analysis and Application of Bifurcations in Systems with Impacts and Chattering (Doctoral dissertation, University degli Studi di Napoli Federico II).; Alzate, R., Analysis and Application of Bifurcations in Systems with Impacts and Chattering, Doctoral dissertation University degli Studi di Napoli Federico II (2008) · doi:10.6092/UNINA/FEDOA/3029
[15] di Bernardo, M., Budd, C. J., Champneys, A. R.and Kowalczyk, (2007), Bifurcation and Chaos in Piecewise Smooth Dynamical Systems. Theory and Applications. Springer-Verlag,UK.; di Bernardo, M.; Budd, C. J.; Champneys, A. R.; Kowalczyk, Theory and Applications (2007) · Zbl 1146.37003 · doi:10.1007/978-1-84628-708-4
[16] Cheng, J., & Xu, H. (2006). Nonlinear dynamic characteristics of a vibro-impact system under harmonic excitation. Journal of Mechanics of Materials and Structures, 1(2), 239-258.; Cheng, J.; Xu, H., Nonlinear dynamic characteristics of a vibro-impact system under harmonic excitation, Journal of Mechanics of Materials and Structures, 1, 2, 239-258 (2006) · doi:10.2140/jomms.2006.1.239
[17] Sharkovsky, A. N., (2013). Basins of attractors of trajectories. Naukova Dumka. ISBN:978-966-00-1292-9. (in Russian); Sharkovsky, A. N., Basins of attractors of trajectories, Naukova Dumka (2013) · Zbl 1355.37046
[18] Mikhlin, Y. V., & Avramov, K. V. (2010). Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments. Applied Mechanics Reviews, 63(6), 060802.; Mikhlin, Y. V.; Avramov, K. V., Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments, Applied Mechanics Reviews, 63, 6 (2010) · Zbl 1089.70518 · doi:10.1115/1.4003825
[19] Castrigiano, D. P., & Hayes, S. A. (2004). Catastrophe theory. Westview Pr. ISBN 10:0813341264 / ISBN 13:9780813341262.; Castrigiano, D. P.; Hayes, S. A., Catastrophe theory, Westview Pr (2004) · Zbl 1059.58002
[20] Arnol’d, V. I. (2003). Catastrophe theory. Springer Science & Business Media.; Arnol’d, V. I., Catastrophe theory, Springer Science & Business Media (2003) · Zbl 0797.58002 · doi:10.1007/978-3-642-96799-3
[21] Afraimovich, V. S., Il’yashenko, Y. S., Shil’nikov, L. P., Arnold, V. I., & Kazarinoff, N. (1994). Dynamical Systems V: Bifurcation Theory and Catastrophe Theory.; Afraimovich, V. S.; Il’yashenko, Y. S.; Shil’nikov, L. P.; Arnold, V. I.; Kazarinoff, N., Dynamical Systems V: Bifurcation Theory and Catastrophe Theory (1994) · Zbl 1038.37500 · doi:10.1007/978-3-642-57884-7
[22] Cao, Q. J., Han, Y. W., Liang, T. W., Wiercigroch, M., & Piskarev, S. (2014). Multiple buckling and codimension-three bifurcation phenomena of a nonlinear oscillator. International Journal of Bifurcation and Chaos, 24(01).; Cao, Q. J.; Han, Y. W.; Liang, T. W.; Wiercigroch, M.; Piskarev, S., Multiple buckling and codimension-three bifurcation phenomena of a nonlinear oscillator, International Journal of Bifurcation and Chaos, 24, 1 (2014) · Zbl 1284.34050 · doi:10.1142/S0218127414300055
[23] Della Rossa, F., & Dercole, F. (2011, August). The transition from persistence to nonsmooth-fold scenarios in relay control system. In Proceedings of the 18th IFAC World Congress, Milano, Italy.; Della; Rossa, F.; Dercole, F., The transition from persistence to nonsmooth-fold scenarios in relay control system, In Proceedings of the 18th IFAC World Congress, Milano, Italy (2011) · Zbl 1482.93487 · doi:10.3182/20110828-6-IT-1002.01354
[24] Demazure, M. (2013). Bifurcations and catastrophes: geometry of solutions to nonlinear problems. Springer Science & Business Media.; Demazure, M., Bifurcations and catastrophes: geometry of solutions to nonlinear problems, Springer Science & Business Media (2013) · Zbl 0959.37002 · doi:10.1007/978-3-642-57134-3
[25] Whiston, G. S. (1995). Catastrophe theory and the vibro-impact dynamics of autonomous oscillators. In Bifurcation and Chaos (pp. 71-95). Springer Berlin Heidelberg.; Whiston, G. S., Catastrophe theory and the vibro-impact dynamics of autonomous oscillators. In Bifurcation and Chaos, Springer Berlin Heidelberg, 71-95 (1995) · doi:10.1007/978-3-642-79329-5_5
[26] Kuznetsova, A. Y., Kuznetsov, A. P., Knudsen, C., & Mosekilde, E. (2004). Catastrophe theoretic classification of nonlinear oscillators. International Journal of Bifurcation and Chaos, 14(04), 1241-1266.; Kuznetsova, A. Y.; Kuznetsov, A. P.; Knudsen, C.; Mosekilde, E., Catastrophe theoretic classification of nonlinear oscillators, International Journal of Bifurcation and Chaos, 14, 4, 1241-1266 (2004) · Zbl 1099.70016 · doi:10.1142/S0218127404009995
[27] Kuznetsov, S. P. (2006). Dynamical chaos. Fizmatlit, Moscow (in Russian). ISBN :5-94052-100-2.; Kuznetsov, S. P., Dynamical chaos (2006) · Zbl 1343.70002
[28] Kuznetsov, S. P. (2011). Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics. Physics-Uspekhi, 54(2), 119.; Kuznetsov, S. P., Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics, Physics-Uspekhi, 54, 2, 119 (2011) · doi:10.3367/UFNr.0181.201102a.0121
[29] Allgower, E. L., & Georg, K. (2003), Introduction to numerical continuation methods (Vol. 45). SIAM.; Allgower, E. L.; Georg, K., Introduction to numerical continuation methods, 45 (2003) · Zbl 1036.65047 · doi:10.1137/1.9780898719154
[30] Nayfeh, A. H., & Balachandran, B. (2008). Applied nonlinear dynamics: analytical, computational and experimental methods. John Wiley & Sons.; Nayfeh, A. H.; Balachandran, B., Applied nonlinear dynamics: analytical, computational and experimental methods, John Wiley & Sons (2008) · Zbl 0848.34001 · doi:10.1002/9783527617548
[31] Aguiar, R. R., & Weber, H. I. (2012). Impact force magnitude analysis of an impact pendulum suspended in a vibrating structure. Shock and Vibration, 19(6), 1359-1372.; Aguiar, R. R.; Weber, H. I., Impact force magnitude analysis of an impact pendulum suspended in a vibrating structure, Shock and Vibration, 19, 6, 1359-1372 (2012) · doi:10.3233/SAV-2012-0678
[32] Grabovski, A. V. (2010). Verification methods and algorithms of forces of the shock interactions in vibro-impact systems. Eastern-European Journal of Enterprise Technologies, 3(9 (45)), 42-46. ISSN (p):1729-3774, ISSN (e):1729-4061.; Grabovski, A. V., Verification methods and algorithms of forces of the shock interactions in vibro-impact systems, Eastern-European Journal of Enterprise Technologies, 3, 9, 45, 42-46 (2010)
[33] Kononova, O., Polukosko, S., & Sokolova, S. (2008). Contact Forces in Vibro-Impact Systems. ISSN: 1407-8015.; Kononova, O.; Polukosko, S.; Sokolova, S., Contact Forces in Vibro-Impact Systems (2008)
[34] Bazhenov, V. A., Pogorelova, O. S., & Postnikova, T. G. (2013), Comparison of Two Impact Simulation Methods Used for Nonlinear Vibroimpact Systems with Rigid and Soft Impacts. Journal of Nonlinear Dynamics, Volume 2013 (2013), Article ID 485676, 12 pages.; Bazhenov, V. A.; Pogorelova, O. S.; Postnikova, T. G., Comparison of Two Impact Simulation Methods Used for Nonlinear Vibroimpact Systems with Rigid and Soft Impacts, Journal of Nonlinear Dynamics, 2013, 2013, 12 (2013) · Zbl 1511.74046 · doi:10.1155/2013/485676
[35] Bazhenov, V. A., Pogorelova, O. S., Postnikova, T. G., & Goncharenko, S. N. (2009), Comparative analysis of modeling methods for studying contact interaction in vibroimpact systems. Strength of materials, 41(4), 392-398.; Bazhenov, V. A.; Pogorelova, O. S.; Postnikova, T. G.; Goncharenko, S. N., Comparative analysis of modeling methods for studying contact interaction in vibroimpact systems, Strength of materials, 41, 4, 392-398 (2009) · Zbl 1493.70081 · doi:10.1007/s11223-009-9143-2
[36] Goldsmith, W. (1964), Impact, the theory and physical behaviour of colliding solids. ISBN:0-486-42004-3 (pbk.); Goldsmith, W., Impact, the theory and physical behaviour of colliding solids (1964) · Zbl 0986.74001
[37] Johnson, K. L. (1974), Contact mechanics, 1985. Cambridge University Press, Cambridge.; Johnson, K. L., Contact mechanics, 1985 (1974) · Zbl 0599.73108 · doi:10.1002/zamm.19890690713
[38] Flores, P., Ambrosio, J., Claro, J. P., & Lankarani, H. M. (2006). Influence of the contact-impact force model on the dynamic response of multi-body systems.Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 220(1), 21-34.; Flores, P.; Ambrosio, J.; Claro, J. P.; Lankarani, H. M., Influence of the contact-impact force model on the dynamic response of multi-body systems Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 220, 1, 21-34 (2006) · Zbl 1143.70319 · doi:10.1243/146441906X77722
[39] Faik, S., & Witteman, H. (2000, June). Modeling of impact dynamics: A literature survey. In 2000 International ADAMS User Conference (Vol. 80).; Faik, S.; Witteman, H., Modeling of impact dynamics: A literature survey (2000)
[40] Papetti, S. (2010). Sound modeling issues in interactive sonification.; Papetti, S., Sound modeling issues in interactive sonification (2010)
[41] Machado, M., Moreira, P., Flores, P., & Lankarani, H. M. (2012), Compliant contact force models in multi-body dynamics: Evolution of the Hertz contact theory. Mechanism and Machine Theory, 53, 99-121.; Machado, M.; Moreira, P.; Flores, P.; Lankarani, H. M., Compliant contact force models in multi-body dynamics: Evolution of the Hertz contact theory, Mechanism and Machine Theory, 99-121 (2012) · doi:10.1016/j.mechmachtheory.2012.02.010
[42] Perret-Liaudet, J., & Rigaud, E. (2009), Non Linear Dynamic Behaviour of an One-Sided Hertzian Contact Excited by an External Gaussian White Noise Normal Excitation. In Vibro-Impact Dynamics of Ocean Systems and Related Problems (pp. 215-215). Springer Berlin Heidelberg.; Perret-Liaudet, J.; Rigaud, E., Non Linear Dynamic Behaviour of an One-Sided Hertzian Contact Excited by an External Gaussian White Noise Normal Excitation, In Vibro-Impact Dynamics of Ocean Systems and Related Problems, 215-215 (2009) · Zbl 0963.74561 · doi:10.1007/978-3-642-00629-6_21
[43] Lamarque, C. H., & Janin, O. (2000), Modal analysis of mechanical systems with impact non-linearities: limitations to a modal superposition. Journal of Sound and Vibration, 235(4), 567-609.; Lamarque, C. H.; Janin, O., Modal analysis of mechanical systems with impact non-linearities: limitations to a modal superposition, Journal of Sound and Vibration, 235, 4, 567-609 (2000) · Zbl 1056.74059 · doi:10.1006/jsvi.1999.2932
[44] Blazejczyk-Okolewska, B., Czolczynski, K., & Kapitaniak, T. (2004). Classification principles of types of mechanical systems with impacts-fundamental assumptions and rules. European Journal of Mechanics-A/Solids, 23(3), 517-537.; Blazejczyk-Okolewska, B.; Czolczynski, K.; Kapitaniak, T., Classification principles of types of mechanical systems with impacts-fundamental assumptions and rules, European Journal of Mechanics-A/Solids, 23, 3, 517-537 (2004) · Zbl 1060.70514 · doi:10.1016/j.euromechsol.2004.02.005
[45] Andreaus, U., & Casini, P. (2000). Dynamics of SDOF oscillators with hysteretic motion-limiting stop. Nonlinear Dynamics, 22(2), 145-164.; Andreaus, U.; Casini, P., Dynamics of SDOF oscillators with hysteretic motion-limiting stop, Nonlinear Dynamics, 22, 2, 145-164 (2000) · Zbl 0974.70017 · doi:10.1023/A:1008354220584
[46] Ma, Y., Agarwal, M., & Banerjee, S. (2006). Border collision bifurcations in a soft impact system. Physics Letters A, 354(4), 281-287.; Ma, Y.; Agarwal, M.; Banerjee, S., Border collision bifurcations in a soft impact system, Physics Letters A, 354, 4, 281-287 (2006) · doi:10.1016/j.physleta.2006.01.025
[47] Andreaus, U., Chiaia, B., & Placidi, L. (2013). Soft-impact dynamics of deformable bodies. Continuum Mechanics and Thermodynamics, 25(2-4), 375-398.; Andreaus, U.; Chiaia, B.; Placidi, L., Soft-impact dynamics of deformable bodies, Continuum Mechanics and Thermodynamics, 25, 2-4, 375-398 (2013) · Zbl 1343.74037 · doi:10.1007/s00161-012-0266-5
[48] Bazhenov, V. A., Pogorelova, O. S., Postnikova, T. G., & Luk’yanchenko, O. A. (2008). Numerical investigations of the dynamic processes in vibroimpact systems in modeling impacts by a force of contact interaction. Strength of Materials, 40(6), 656-662.; Bazhenov, V. A.; Pogorelova, O. S.; Postnikova, T. G.; Luk’yanchenko, O. A., Numerical investigations of the dynamic processes in vibroimpact systems in modeling impacts by a force of contact interaction, Strength of Materials, 40, 6, 656-662 (2008) · doi:10.1007/s11223-008-9080-5
[49] Gulyaev, V. I., Bazhenov, V. A., & Koshkin, V. L. (1988). Optimization Methods in structural mechanics. Naukova Dumka, Kiev. (in Russian); Gulyaev, V. I.; Bazhenov, V. A.; Koshkin, V. L., Optimization Methods in structural mechanics (1988) · Zbl 0582.49022
[50] Bazhenov, V. A., Pogorelova, O. S., & Postnikova, T. G. (2014). Change of impact kind in vibroimpact system due its parameters changing. In MATEC Web of Conferences (Vol. 16, p. 05007). EDP Sciences.; Bazhenov, V. A.; Pogorelova, O. S.; Postnikova, T. G., Change of impact kind in vibroimpact system due its parameters changing (2014) · Zbl 1493.70081 · doi:10.1051/matec-conf/20141605007
[51] Bazhenov, V. A., Pogorelova, O. S., & Postnikova, T. G. (2014). Influence of system stiffness parameters at contact softness in vibroimpact system. Strength of Materials and Theory of Structures, (92), 65-77. ISSN (p): 2410-2547.; Bazhenov, V. A.; Pogorelova, O. S.; Postnikova, T. G., Influence of system stiffness parameters at contact softness in vibroimpact system, Strength of Materials and Theory of Structures, 92, 65-77 (2014) · Zbl 1493.70081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.