×

Transformation invariant stochastic catastrophe theory. (English) Zbl 1101.58025

Summary: Catastrophe theory is a mathematical formalism for modeling nonlinear systems whose discontinuous behavior is determined by smooth changes in a small number of driving parameters. Fitting a catastrophe model to noisy data constitutes a serious challenge, however, because catastrophe theory was formulated specifically for deterministic systems. Loren Cobb addressed this challenge by developing a stochastic counterpart of catastrophe theory (SCT) based on Itô stochastic differential equations. In SCT, the stable and unstable equilibrium states of the system correspond to the modes and the antimodes of the empirical probability density function, respectively. Unfortunately, SCT is not invariant under smooth and invertible transformations of variables – this is an important limitation, since invariance to diffeomorphic transformations is essential in deterministic catastrophe theory. From the Itô transformation rules we derive a generalized version of SCT that does remain invariant under transformation and can include Cobb’s SCT as a special case. We show that an invariant function is obtained by multiplying the probability density function with the diffusion function of the stochastic process. This invariant function can be estimated by a straightforward time series analysis based on level crossings. We illustrate the invariance problem and its solution with two applications.

MSC:

58K35 Catastrophe theory
37M10 Time series analysis of dynamical systems
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)

Software:

R
Full Text: DOI

References:

[1] Thom, R., Structural Stability and Morphogenesis (1975), Benjamin-Addison Wesley: Benjamin-Addison Wesley New York · Zbl 0303.92002
[2] Zeeman, E. C., Catastrophe theory, Sci. Am., 234, 65-83 (1976) · Zbl 0342.58013
[3] Zeeman, E. C., Catastrophe Theory: Selected Papers (1972-1977) (1977), Addison-Wesley: Addison-Wesley New York · Zbl 0398.58012
[4] Sperling, G., Binocular vision: a physical and a neural theory, Am. J. Psychol., 83, 461-534 (1970)
[5] Poston, T.; Stewart, I., Catastrophe Theory and its Applications (1978), Dover: Dover New York · Zbl 0382.58006
[6] Gilmore, R., Catastrophe Theory for Scientists and Engineers (1981), Dover: Dover New York · Zbl 0497.58001
[7] Sperling, G., Mathematical models of binocular vision, (Grossberg, S., Mathematical Psychology and Psychophysiology (1981), SIAM Proceedings: SIAM Proceedings Providence, Rhode Island) · Zbl 0546.92018
[8] Stewart, I. N.; Peregoy, P. L., Catastrophe theory modeling in psychology, Psychol. Bull., 94, 336-362 (1983)
[9] van der Maas, H. L.J.; Molenaar, P. C.M., Stagewise cognitive development: an application of catastrophe theory, Psychol. Rev., 99, 395-417 (1992)
[10] Ploeger, A.; van der Maas, H. L.J.; Hartelman, P. A.I., Stochastic catastrophe analysis of switches in the perception of apparent motion, Psychon. Bull. Rev., 9, 26-42 (2002)
[11] Newell, K. M.; Liu, Y.-T.; Mayer-Kress, G., Time scales in motor learning and development, Psychol. Rev., 108, 57-82 (2001)
[12] Wales, D. J., A microscopic basis for the global appearance of energy landscapes, Science, 293, 2067-2070 (2001)
[13] Aerts, D.; Czachor, M.; Gabora, L.; Kuna, M.; Posiewnik, A.; Pykacz, J.; Syty, M., Quantum morphogenesis: a variation on Thom’s catastrophe theory, Phys. Rev. E, 67, 51926 (2003)
[14] Tamaki, T.; Torii, T.; Meada, K., Stability analysis of black holes via a catastrophe theory and black hole thermodynamics in generalized theories of gravity, Phys. Rev. D, 68, 24028 (2003)
[15] van der Maas, H. L.J.; Kolstein, R.; van der Pligt, J., Sudden transitions in attitudes, Sociol. Methods Res., 32, 125-152 (2003)
[16] Castrigiano, D. P.L.; Hayes, S. A., Catastrophe Theory (1993), Addison-Wesley: Addison-Wesley New York · Zbl 0782.58001
[17] Arnold, V. I.; Afrajmovich, V. S.; Il’yashenko, Y. S.; Shil’nikov, L. P., Bifurcation Theory and Catastrophe Theory (1999), Springer Verlag: Springer Verlag New York · Zbl 1038.37500
[18] Cobb, L., Stochastic catastrophe models and multimodal distributions, Behav. Sci., 23, 360-374 (1978)
[19] Cobb, L., Parameter estimation for the cusp catastrophe model, Behav. Sci., 26, 75-78 (1981)
[20] Cobb, L.; Koppstein, P.; Chen, N. H., Estimation and Moment recursion relations for multimodal distributions of the exponential family, J. Am. Stat. Assoc., 78, 124-130 (1983) · Zbl 0508.62015
[21] Cobb, L.; Zacks, S., Applications of catastrophe theory for statistical modeling in the biosciences, J. Am. Stat. Assoc., 80, 793-802 (1985) · Zbl 0582.62092
[22] Cobb, L.; Watson, B., Statistical catastrophe theory: an overview, Math. Model., 1, 311-317 (1980) · Zbl 0513.58014
[23] Molenaar, P. C.M.; Hartelman, P. A.I., Catastrophe theory of stage transitions in metrical and discrete stochastic systems, (von Eye, A.; Clogg, C. C., Categorical Variables in Developmental Research (1996), Academic Press: Academic Press San Diego), 107-130
[24] Crauel, H.; Flandoli, F., Additive noise destroys a pitchfork bifurcation, J. Dynam. Differ. Equations, 10, 259-274 (1998) · Zbl 0907.34042
[25] Arnold, L., Random Dynamical Systems (2003), Springer Verlag: Springer Verlag Berlin
[26] Soong, T. T., Random Differential Equations in Science and Engineering (1973), Academic Press: Academic Press New York · Zbl 0348.60081
[27] Honerkamp, J., Stochastic Dynamical Systems (1994), VCH Publishers: VCH Publishers New York
[28] Mikosch, T., Elementary Stochastic Calculus with Finance in View (1998), World Scientific: World Scientific Singapore · Zbl 0934.60002
[29] Gardiner, C. W., Handbook of Stochastic Methods (2004), Springer Verlag: Springer Verlag Berlin · Zbl 0862.60050
[30] Itô, K., On stochastic differential equations, Memoirs Am. Math. Soc., 4, 1-51 (1951) · Zbl 0054.05803
[31] Stratonovich, R. L., A new representation for stochastic integrals and equations, SIAM J. Control, 4, 362-371 (1966) · Zbl 0143.19002
[32] Perelló, J.; Porrà, J. M.; Montero, M.; Masoliver, J., Black-Scholes option pricing within Itô and Stratonovich conventions, Physica A, 278, 260-274 (2000)
[33] P.A.I. Hartelman, Stochastic catastrophe theory, Ph.D. thesis, University of Amsterdam, 1997.; P.A.I. Hartelman, Stochastic catastrophe theory, Ph.D. thesis, University of Amsterdam, 1997.
[34] Hartelman, P. A.I.; van der Maas, H. L.J.; Molenaar, P. C.M., Detecting and modeling developmental transitions, Br. J. Dev. Psychol., 16, 97-122 (1998)
[35] Bilodeau, M.; Brenner, D., Theory of Multivariate Statistics (1999), Springer Verlag: Springer Verlag New York · Zbl 0930.62054
[36] Silverman, B. W., Density Estimation for Statistics and Data Analysis (1986), Chapman & Hall: Chapman & Hall London · Zbl 0617.62042
[37] West, B. J.; Bulsara, A. R.; Lindenberg, K.; Seshadri, V.; Shuler, K. E., Stochastic processes with non-additive fluctuations. I. Itô and Stratonovich calculus and the effects of correlations, Physica, 97A, 211-233 (1979)
[38] Bulsara, A. R.; Lindenberg, K.; Seshadri, V.; Shuler, K. E.; West, B. J., Stochastic processes with non-additive fluctuations. II. Some applications of Itô and stratonovich calculus, Physica, 97A, 234-243 (1979)
[39] Smythe, J.; Moss, F.; McClintock, P. V.E., Observation of a noise-induced phase transition with an analog simulator, Phys. Rev. Lett., 51, 1062-1065 (1983)
[40] Leung, H. K., Stochastic aspects of nonequilibrium phase transitions, Phys. Rev. A, 41, 1862-1866 (1990)
[41] van Kampen, N. G., Itô versus stratonovich, J. Stat. Phys., 24, 175-187 (1981) · Zbl 0509.60057
[42] Parzen, E., On estimation of a probability density function and mode, Ann. Math. Stat., 33, 1065-1076 (1962) · Zbl 0116.11302
[43] Florens, D., Statistics on crossings of discretized diffusions and local time, Stochastic Processes Appl., 39, 139-151 (1991) · Zbl 0741.60074
[44] Florens, D., On estimating the diffusion coefficient from discrete observations, J. Appl. Probab., 30, 790-804 (1993) · Zbl 0796.62070
[45] Florens, D., Estimation of the diffusion coefficient from crossings, Stat. Inference Stochastic Processes, 1, 175-195 (1999) · Zbl 0980.62071
[46] Jiang, G. J.; Knight, J. L., A nonparametric approach to the estimation of diffusion processes, with an application to a short-term interest rate model, Econ. Theory, 13, 615-645 (1997)
[47] Jiang, G. J.; Knight, J. L., Finite sample comparison of alternative estimators of Itô diffusion processes—a Monte Carlo study, J. Comput. Finance, 2, 1-34 (1999)
[48] Azzalini, A.; Bowman, A. W., A look at some data on the old faithful geyser, Appl. Stat., 39, 357-365 (1990) · Zbl 0707.62186
[49] Pottschmidt, K.; Wilms, J.; Nowak, M. A.; Pooley, G. G.; Gleissner, T.; Heindl, W. A.; Smith, D. M.; Remillard, R.; Staubert, R., Long term variability of cygnus X-1. I. X-ray spectral-temporal correlations in the hard state, Astron. Astrophys., 407, 1039-1058 (2003)
[50] Gleissner, T.; Wilms, J.; Pottschmidt, K.; Uttley, P.; Nowak, M. A.; Staubert, R., Long term variability of Cyg X-1. II. the rms-flux relation, Astron. Astrophys., 414, 1091-1104 (2004)
[51] R Development Core Team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2004, ISBN 3-900051-00-3, http://www.R-project.org; R Development Core Team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2004, ISBN 3-900051-00-3, http://www.R-project.org
[52] Dunn, J. C.; James, R. N., Signed difference analysis: theory and application, J. Math. Psychol., 47, 389-416 (2003) · Zbl 1077.91041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.