×

The Borsuk-Ulam theorem for planar polygon spaces. (English) Zbl 1496.55002

The moduli space of planar polygons with prescribed generic side lengths is a smooth manifold equipped with a natural fixed point free involution. So a Borsuk-Ulam-type question makes sense. As it is known, this question is related with \(\mathbb{Z }_2\)-index, coindex and Stiefel-Whitney height. The paper contains the computations and estimations of these numbers.
The topology of the moduli space depends on the side lengths, namely, on the genetic code (some combinatorial data). A formula for the Stiefel-Whitney height of the moduli space in terms of the genetic code is obtained.

MSC:

55M20 Fixed points and coincidences in algebraic topology
55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects)
55P15 Classification of homotopy type
57R42 Immersions in differential topology
55R80 Discriminantal varieties and configuration spaces in algebraic topology

References:

[1] Csorba, Péter, Non-tidy spaces and graph colorings (2005), ETH: ETH Zurich, PhD thesis
[2] Davis, Donald M., Manifold properties of planar polygon spaces, Topol. Appl., 250, 27-36 (2018) · Zbl 1407.57020
[3] Davis, Donald M., On the cohomology classes of planar polygon spaces, (Contemp. Math. (2018), American Mathematical Society), 85-89 · Zbl 1404.55005
[4] Davis, Donald M., On the cohomology classes of planar polygon spaces, (Topological Complexity and Related Topics. Topological Complexity and Related Topics, Contemp. Math., vol. 702 (2018), Amer. Math. Soc.: Amer. Math. Soc. [Providence], RI), 85-89, ©2018 · Zbl 1404.55005
[5] Farber, Michael, Invitation to Topological Robotics, Zurich Lectures in Advanced Mathematics (2008), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich · Zbl 1148.55011
[6] Gadgil, Siddhartha, Embedded spheres in \(S^2 \times S^1 \operatorname{\#} \cdots \operatorname{\#} S^2 \times S^1\), Topol. Appl., 153, 7, 1141-1151 (2006) · Zbl 1087.57002
[7] Gonçalves, Daciberg L.; Hayat, Claude; Zvengrowski, Peter, The Borsuk-Ulam theorem for manifolds, with applications to dimensions two and three, (Group Actions and Homogeneous Spaces (2010), Fak. Mat. Fyziky Inform. Univ. Komenského: Fak. Mat. Fyziky Inform. Univ. Komenského Bratislava), 9-28 · Zbl 1220.55001
[8] Hausmann, J.-C.; Knutson, A., The cohomology ring of polygon spaces, Ann. Inst. Fourier (Grenoble), 48, 1, 281-321 (1998) · Zbl 0903.14019
[9] Hausmann, Jean-Claude, Geometric descriptions of polygon and chain spaces, (Topology and Robotics. Topology and Robotics, Contemp. Math., vol. 438 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 47-57 · Zbl 1143.55301
[10] Hausmann, Jean-Claude; Rodriguez, Eugenio, The space of clouds in Euclidean space, Exp. Math., 13, 1, 31-47 (2004) · Zbl 1053.55015
[11] Kamiyama, Yasuhiko, Homology of the universal covering of planar polygon spaces, JP J. Geom. Topol., 10, 2, 171-181 (2010) · Zbl 1219.57021
[12] Kamiyama, Yasuhiko; Kimoto, Kazufumi, The height of a class in the cohomology ring of polygon spaces, Int. J. Math. Math. Sci., Article 305926 pp. (2013) · Zbl 1295.55015
[13] Matoušek, Jiří, Using the Borsuk-Ulam Theorem, Universitext (2003), Springer-Verlag: Springer-Verlag Berlin, Lectures on topological methods in combinatorics and geometry, Written in cooperation with Anders Björner and Günter M. Ziegler · Zbl 1016.05001
[14] McCullough, Darryl, Connected sums of aspherical manifolds, Indiana Univ. Math. J., 30, 17-28 (1981) · Zbl 0427.55004
[15] Musin, Oleg R., Borsuk-Ulam type theorems for manifolds, Proc. Am. Math. Soc., 140, 7, 2551-2560 (2012) · Zbl 1278.55007
[16] Panina, Gaiane, Moduli space of a planar polygonal linkage: a combinatorial description, Arnold Math. J., 3, 3, 351-364 (2017) · Zbl 1423.52039
[17] Scott, Peter; Wall, Terry, Topological methods in group theory. Homological group theory, (Proc. Symp.. Proc. Symp., Durham 1977. Proc. Symp.. Proc. Symp., Durham 1977, Lond. Math. Soc. Lect. Note Ser., vol. 36 (1979)), 137-203 · Zbl 0423.20023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.