×

Reliability analysis of a class of stochastically excited nonlinear Markovian jump systems. (English) Zbl 1498.62183

Summary: It is inevitable for the nonlinear systems to suffer from external stochastic disturbance. Meanwhile, the components failure will bring abrupt changes in its substructures, which can be considered as the internal stochastic disturbance. It is demonstrated that the components failure performs random jumpy factors switching between a finite number of modes. This salient feature allows us to identify this type of dynamic behaviors as response of nonlinear hybrid systems undergoing Markovian jumps. In this paper a novel method is presented to analyze the dynamical reliability of multi-degree-of-freedom (DOF) nonlinear stochastic systems undergoing Markovian jumps. Firstly, the Markovian jump process is introduced to formulate the aforementioned systems as continuous-discrete hybrid systems. Secondly, a two-step approximate method is applied to convert the hybrid systems to one governed by a set of averaged Itô stochastic differential equations (SDEs) of mechanical energies. Then the associated averaged backward Kolmogorov equation and the Pontryagin equation are constructed and solved to yield the conditional reliability function and the mean first-passage time of the original system respectively. Finally, an example of two coupled Duffing oscillators is illustrated to compare the analytical results and those from Monte Carlo simulation to verify the effectiveness of the proposed method.

MSC:

62N02 Estimation in survival analysis and censored data
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Khasminskii, R. Z., On the averaging principle for Itô stochastic differential equations, Kybernetica, 4, 260-279 (1968) · Zbl 0231.60045
[2] Kushner, H. J., Approximation and weak convergence methods for random processes, with applications to stochastic systems theory, 6 (1984), MIT Press · Zbl 0551.60056
[3] Zhu, W. Q., Recent developments and applications of stochastic averaging method in random vibration, Appl Mech Rev, 49, 10, 72-80 (1996)
[4] Carollo, A.; Spagnolo, B.; Valenti, D., Uhlmann curvature in dissipative phase transitions, Sci Rep, 8, 9852 (2018)
[5] Ushakov, Y. V.; Dubkov, A. A.; Spagnolo, B., Spike train statistics for consonant and dissonant musical accords in a simple auditory sensory model, Phys Rev E, 81, Article 041911 pp. (2010)
[6] Mikhaylov, A.; Pimashkin, A.; Pigareva, Y.; Gerasimova, S. A.; Lobov, S.; Gryaznov, E.; Talanov, M.; Lavrov, I.; Demin, V.; Erokhin, V.; Kazantsev, V. B.; Wu, H.; Spagnolo, B., Neurohybrid memristive CMOS integrated systems for biosensors and neuroprostetics, Front Neurosci, 14, 358 (2020)
[7] Caruso, A.; Gargano, M. E.; Valenti, D.; Fiasconaro, A.; Spagnolo, B., Cyclic fluctuations, climatic changes and role of noise in planktonic foraminifera in the Mediterranean Sea, Fluct Noise Lett, 5, 02, L349-L355 (2005)
[8] Pizzolato, N.; Fiasconaro, A.; Adorno, D. P.; Spagnolo, B., Resonant activation in polymer translocation: new insights into the escape dynamics of molecules driven by an oscillating field, Phys Biol, 7, 3, Article 034001 pp. (2010)
[9] Guarcello, C.; Valenti, D.; Carollo, A.; Spagnolo, B., Effects of Lévy noise on the dynamics of sine-Gordon solitons in long Josephson junctions, J Stat Mech, 5, Article 054012 pp. (2016) · Zbl 1456.82942
[10] La Barbera, A.; Spagnolo, B., Spatio-temporal patterns in population dynamics, Phys A, 314, 1-4, 120-124 (2002) · Zbl 1001.92040
[11] Horsthemke, W.; Lefever, R., Noise-induced transitions in physics, chemistry, and biology, 15 (2006), Springer: Springer Berlin · Zbl 0529.60085
[12] Ciuchi, S.; de Pasquale, F.; Spagnolo, B., Self-regulation mechanism of an ecosystem in a non-Gaussian fluctuation regime, Phys Rev E, 54, 706-716 (1996)
[13] Denaro, G.; Valenti, D.; Spagnolo, B.; Basilone, G.; Mazzola, S.; Zgozi, S. W.; Aronica, S.; Bonanno, A., Dynamics of two picophy-toplankton groups in Mediterranean Sea: analysis of the deep chlorophyll maximum by a stochastic advection-reaction-diffusion model, PLoS ONE, 8, e66765 (2013)
[14] Spagnolo, B.; Cirone, M.; La Barbera, A.; de Pasquale, F., Noise-induced effects in population dynamics, J Phys, 14, 9, 2247-2255 (2002)
[15] W.J. Venstra, H.J. Westra, H.S. Van Der Zant. Stochastic switching of cantilever motion., 4(1) (2013) 1-6.
[16] Chun, S.; Swaminathan, M.; Smith, L. D.; Srinivasan, J.; Jin, Z.; Iyer, M. K., Modeling of simultaneous switching noise in high speed systems, IEEE Trans Adv Packag, 24, 2, 132-142 (2001)
[17] Hu, R. C.; Gu, X. D.; Deng, Z. C., Stochastic response analysis of multi-degree-of-freedom vibro-impact system undergoing Markovian jump, Nonlinear Dyn, 101, 823-834 (2020)
[18] Dehghanpour, K.; Afsharnia, S., Electrical demand side contribution to frequency control in power systems: a review on technical aspects, Renew Sustain Energy Rev, 41, 1267-1276 (2015)
[19] Costa M, M.; Hauzy, C.; Loeuille, N.; Méléard, S., Stochastic eco-evolutionary model of a prey-predator community, J Math Biol, 72, 3, 573-622 (2016) · Zbl 1335.60159
[20] Goebel, R.; Sanfelice, R. G.; Teel, A. R., Hybrid dynamical systems, IEEE Control Syst Mag, 29, 2, 28-93 (2009) · Zbl 1395.93001
[21] Kartite, J.; Cherkaoui, M., Study of the different structures of hybrid systems in renewable energies: a review, Energy Proc, 157, 323-330 (2019)
[22] Nejatia, A.; Soudjanib, S.; Zamani, M., Compositional abstraction-based synthesis for continuous-time stochastic hybrid systems, Eur J Control, 57, 82-94 (2021) · Zbl 1455.93190
[23] Juloski, A. L.; Weiland, S.; Heemels, W. P.M. H., A Bayesian approach to identification of hybrid systems, IEEE Trans Autom Control, 50, 10, 1520-1533 (2005) · Zbl 1365.93526
[24] Altan, A.; Karasu, S., Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique, Chaos Solitons Fractals, 140, Article 110071 pp. (2020)
[25] Karasu, S.; Altan, A.; Bekiros, S.; Ahmad, W., A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series, Energy, 212, 1, Article 118750 pp. (2020)
[26] Altan, A.; Karasu, S.; Zio, E., A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer, Appl Soft Comput, 100, Article 106996 pp. (2021)
[27] Zhang, L.; Boukas, E. K., Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities, Automatica, 45, 2, 463-468 (2009) · Zbl 1158.93414
[28] Huan, R. H.; Zhu, W. Q.; Ma, F.; Ying, Z. G., Stationary response of a class of nonlinear stochastic systems undergoing Markovian jumps, J Appl Mech, 82, 5, Article 051008 pp. (2015)
[29] Hu, R. C.; Dong, H.; Gu, X. D.; Deng, Z. C., Feedback stabilization of multi-DOF nonlinear stochastic Markovian jump systems, Int J Robust Nonlinear Control, 8, 1-14 (2019)
[30] Krasovskii, N. N.; Lidskii, E. A., Analytical design of controllers in systems with random attributes, Autom Remote Control, 22, 1-3, 1021-1025 (1961) · Zbl 0104.36704
[31] Kats, I. I.; Krasovskii, N. N., On the stability of systems with random parameters, J Appl Math Mech, 24, 5, 1225-1246 (1960) · Zbl 0103.36403
[32] Kushner, H. J., Stochastic stability and control (1967), Academic: Academic New York · Zbl 0244.93065
[33] Mariton, M., Almost sure and moment stability of jump linear systems, Syst Control Lett, 11, 393-397 (1988) · Zbl 0672.93073
[34] Sworder, D., Feedback control of a class of linear systems with jump parameters, IEEE Trans Autom Control, 14, 1, 9-14 (1969)
[35] Skorokhod, A. V., Asymptotic methods of the theory of stochastic differential equations (2009), American Mathematical Society
[36] Hu, R. C.; Gu, X. D., Stationary response of nonlinear Markovian jump system under wide-band random excitation, J Low Frequency Noise Vib Active Control, 38, 1234-1245 (2019), 3-4
[37] Xia, L.; Sun, J. J.; Ying, Z. G.; Huan, R. H.; Zhu, W. Q., Dynamics and response reshaping of nonlinear predator-prey system undergoing random abrupt disturbances, Appl Math Mech, 42, 8, 1123-1134 (2021) · Zbl 1480.92234
[38] Oppelstrup, T.; Bulatov, V. V.; Donev, A.; Kalos, M. H.; Gilmer, G. H.; Sadigh, B., First-passage kinetic Monte Carlo method, Phys Rev E, 80, 6, 66701 (2009)
[39] Li, W.; Chen, L.; Trisovic, N.; Cvetkovic, A.; Zhao, J., First-passage of stochastic fractional derivative systems with power-mode restoring force, Int J Non Linear Mech, 71, 83-88 (2015)
[40] Kougioumtzoglou, I. A.; Spanos, P. D., Stochastic response analysis of the softening Duffing oscillator and ship capsizing probability determination via a numerical path integral approach, Probab Eng Mech, 35, 67-74 (2014)
[41] Spanos, P. D.; di Matteo, A.; Cheng, Y.; Pirrotta, A.; Li, J., Galerkin scheme-based determination of survival probability of oscillators with fractional derivative elements, J Appl Mech, 83, 12, Article 121003 pp. (2016)
[42] Han, Q.; Xu, W.; Yue, X. L.; Zhang, Y., First-passage time statistics in a bistable system subject to Poisson white noise by the generalized cell mapping method, Commun Nonlinear Sci Numer Simul, 23, 1-3, 220-228 (2015) · Zbl 1351.60117
[43] Barbato, M.; Conte, J. P., Structural reliability applications of nonstationary spectral characteristics, J Eng Mech, 137, 5, 371-382 (2011)
[44] Li, W.; Xu, W.; Zhao, J. F.; Jin, Y. F., First-passage problem for strong nonlinear stochastic dynamical systems, Chaos Solitons Fractals, 28, 414-421 (2006) · Zbl 1083.70518
[45] Jin, Y. F.; Xu, W., Mean first-passage time of a bistable kinetic model driven by two different kinds of coloured noises, Chaos, Solitons Fractals, 23, 1, 275-280 (2005) · Zbl 1116.60350
[46] Zhu, W. Q.; Wu, Y. J., First-passage time of Duffing oscillator under combined harmonic and white-noise excitations, Nonlinear Dyn, 32, 3, 291-305 (2003) · Zbl 1062.70605
[47] Liu, Z. H.; Zhu, W. Q., First-passage failure of quasi-integrable Hamiltonian systems under time-delayed feedback control, J Sound Vib, 315, 1-2, 301-317 (2008)
[48] Wu, Y. J., Dynamical reliability of internally resonant or non-resonant strongly nonlinear system under random excitations, Mech Syst Sig Process, 118, 767-780 (2019)
[49] Sun, J. J.; Xu, W.; Lin, Z. F., Research on the reliability of friction system under combined additive and multiplicative random excitations, Commun Nonlinear Sci Numer Simul, 54, 1-12 (2018) · Zbl 1510.70068
[50] Xu, Z.; Cheung, Y. K., Averaging method using generalized harmonic functions for strongly nonlinear oscillators, J Sound Vib, 174, 563-576 (1994) · Zbl 0945.70534
[51] Khasminskii, R. Z., On the averaging principle for Itô stochastic differential equations, Kybernetica, 4, 260-279 (1968) · Zbl 0231.60045
[52] Guarcello, C.; Valenti, D.; Spagnolo, B., Phase dynamics in graphene-based Josephson junctions in the presence of thermal and correlated fluctuations, Phys Rev B, 92, 17, Article 174519 pp. (2015)
[53] Guarcello, C.; Valenti, D.; Spagnolo, B.; Pierro, V.; Filatrella, G., Anomalous transport effects on switching currents of graphene-based Josephson junctions, Nanotechnology, 28, 13, Article 134001 pp. (2017)
[54] Guarcello, C.; Valenti, D.; Carollo, A.; Spagnolo, B., Stabilization effects of dichotomous noise on the lifetime of the superconducting state in a long Josephson junction, Entropy, 17, 2862-2875 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.