×

Location of eigenvalues of non-self-adjoint discrete Dirac operators. (English) Zbl 1454.47033

Let \(\{e_{n}\}_{n\in\mathbb{Z}}\) be the standard basis of the Hilbert space \(\ell^{2}(\mathbb{Z})\) and let \(d:\ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})\) be the difference operator defined by \(de_{n}:=e_{n}-e_{n+1}\), \(n\in\mathbb{Z} .\) The free discrete Dirac operator \(D_0\) is a self-adjoint bounded operator in the Hilbert space \(\ell^2(\mathbb{Z})\oplus\ell^2(\mathbb{Z})\) given by the block operator matrix \[ D_0 := \begin{pmatrix}m & d \\ d^* & -m\end{pmatrix},\] where \(m\) is a non-negative constant. The authors investigate the operator \(D_0\) perturbed by a complex potential \(V\in \ell^p(\mathbb{Z},\mathbb{C}^{2\times 2})\) for \(1\leq p\leq\infty\). If \(p=1\), it is proved that the point spectrum satisfies \[\sigma_{\mathrm{p}}(D_V)\subset \left\{\lambda\in\mathbb{C} : |\lambda^2-m^2||\lambda^2-m^2-4| \leq \bigl(|\lambda+m|+|\lambda-m|\bigr)^2\|V\|^2_1 \right\}.\] As a corollary, subsets of the essential spectrum free of embedded eigenvalues are determined for small \(\ell^1\)-potential.
Several results provide a spectral estimates for \(V\in \ell^p\), \(p > 1\). Further possible improvements and sharpness of the obtained spectral bounds are also discussed.

MSC:

47B28 Nonselfadjoint operators
47A08 Operator matrices
47B39 Linear difference operators
39A70 Difference operators
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] Abramov, AA; Aslanyan, A.; Davies, EB, Bounds on complex eigenvalues and resonances, J. Phys. A Math. Gen., 34, 57-72 (2001) · Zbl 1123.81415 · doi:10.1088/0305-4470/34/1/304
[2] Bagarello, F.; Gazeau, J-P; Szafraniec, FH; Znojil, M., Non-selfadjoint Operators in Quantum Physics: Mathematical Aspects (2015), Hoboken: Wiley-Interscience, Hoboken · Zbl 1329.81021
[3] Bairamov, E.; Çelebi, AO, Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators, Q. J. Math. Oxf. Ser. (2), 50, 200, 371-384 (1999) · Zbl 0945.47026 · doi:10.1093/qjmath/50.200.371
[4] Boykin, TB; Klimeck, G., The discretized Schrödinger equation and simple models for semiconductor quantum wells, Eur. J. Phys., 25, 503-514 (2004) · Zbl 1073.82625 · doi:10.1088/0143-0807/25/4/006
[5] Carvalho, SL; de Oliveira, CR; Prado, RA, Sparse one-dimensional discrete Dirac operators II: spectral properties, J. Math. Phys., 52, 7, 073501, 21 (2011) · Zbl 1317.81096 · doi:10.1063/1.3600536
[6] Cossetti, L.: Bounds on eigenvalues of perturbed Lamé operators with complex potentials (2019). ArXiv:1904.08445v1 [math.SP] · Zbl 1375.35103
[7] Cuenin, J-C, Estimates on complex eigenvalues for Dirac operators on the half-line, Integr. Equ. Oper. Theory, 79, 3, 377-388 (2014) · Zbl 1293.81020 · doi:10.1007/s00020-014-2146-9
[8] Cuenin, J-C, Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials, J. Funct. Anal., 272, 7, 2987-3018 (2017) · Zbl 1436.47012 · doi:10.1016/j.jfa.2016.12.008
[9] Cuenin, J-C; Laptev, A.; Tretter, C., Eigenvalue estimates for non-selfadjoint Dirac operators on the real line, Ann. Henri Poincaré, 15, 707-736 (2014) · Zbl 1287.81050 · doi:10.1007/s00023-013-0259-3
[10] Cuenin, J-C; Siegl, P., Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications, Lett. Math. Phys., 108, 7, 1757-1778 (2018) · Zbl 1402.34087 · doi:10.1007/s11005-018-1051-6
[11] de Oliveira, CR; Prado, RA, Spectral and localization properties for the one-dimensional Bernoulli discrete Dirac operator, J. Math. Phys., 46, 7, 072105, 17 (2005) · Zbl 1110.81079 · doi:10.1063/1.1948328
[12] Dubuisson, C., On quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator, Integr. Equ. Oper. Theory, 78, 249-269 (2014) · Zbl 1302.35274 · doi:10.1007/s00020-013-2112-y
[13] Enblom, A., Resolvent estimates and bounds on eigenvalues for Dirac operators on the half-line, J. Phys. A Math. Theor., 51, 165203 (2018) · Zbl 1390.81144 · doi:10.1088/1751-8121/aab487
[14] Fanelli, L.; Krejčiřík, D., Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators, Lett. Math. Phys., 109, 1473-1485 (2019) · Zbl 1419.35138 · doi:10.1007/s11005-018-01155-7
[15] Fanelli, L.; Krejčiřík, D.; Vega, L., Absence of eigenvalues of two-dimensional magnetic Schrödinger operators, J. Funct. Anal., 275, 9, 2453-2472 (2018) · Zbl 1403.35184 · doi:10.1016/j.jfa.2018.08.007
[16] Fanelli, L.; Krejčiřík, D.; Vega, L., Spectral stability of Schrödinger operators with subordinated complex potentials, J. Spectr. Theory, 8, 2, 575-604 (2018) · Zbl 1391.35296 · doi:10.4171/JST/208
[17] Frank, RL, Eigenvalue bounds for Schrödinger operators with complex potentials. III, Trans. Am. Math. Soc., 370, 1, 219-240 (2018) · Zbl 1390.35204 · doi:10.1090/tran/6936
[18] Frank, RL; Simon, B., Eigenvalue bounds for Schrödinger operators with complex potentials. II, J. Spectr. Theory, 7, 3, 633-658 (2017) · Zbl 1386.35061 · doi:10.4171/JST/173
[19] Geronimo, JS; Van Assche, W., Orthogonal polynomials with asymptotically periodic recurrence coefficients, J. Approx. Theory, 46, 3, 251-283 (1986) · Zbl 0604.42023 · doi:10.1016/0021-9045(86)90065-1
[20] Gohberg, I.; Goldberg, S.; Krupnik, N., Traces and Determinants of Linear Operators, Operator Theory: Advances and Applications (2000), Basel: Birkhäuser, Basel · Zbl 0946.47013
[21] Golénia, S.; Haugomat, T., On the a.c. spectrum of the 1D discrete Dirac operator, Methods Funct. Anal. Topol., 20, 3, 252-273 (2014) · Zbl 1324.47066
[22] Hewitt, E., Ross, K.A.: Abstract harmonic analysis, vol. I, 2nd edn, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer, Berlin-New York, Structure of Topological Groups, Integration Theory, Group Representations (1979) · Zbl 0416.43001
[23] Hulko, A., On the number of eigenvalues of the discrete one-dimensional Dirac operator with a complex potential, Anal. Math. Phys., 9, 1, 639-654 (2019) · Zbl 07074243 · doi:10.1007/s13324-018-0222-z
[24] Ibrogimov, O.O., Krejčiřík, D., Laptev, A.: Sharp bounds for eigenvalues of biharmonic operators with complex potentials in low dimensions (2019). ArXiv:1903.01810v1 [math.SP]
[25] Ibrogimov, OO; Štampach, F., Spectral enclosures for non-self-adjoint discrete Schrödinger operators, Integr. Equ. Oper. Theory, 91, 53 (2019) · Zbl 1439.39012 · doi:10.1007/s00020-019-2553-z
[26] Kopylova, E.; Teschl, G., Dispersion estimates for one-dimensional discrete Dirac equations, J. Math. Anal. Appl., 434, 1, 191-208 (2016) · Zbl 1330.35366 · doi:10.1016/j.jmaa.2015.08.075
[27] Lieb, EH; Loss, M., Analysis. Graduate Studies in Mathematics (2001), Providence: American Mathematical Society, Providence · Zbl 0966.26002
[28] Sambou, D., A criterion for the existence of nonreal eigenvalues for a Dirac operator, N. Y. J. Math., 22, 469-500 (2016) · Zbl 1341.35094
[29] Stein, EM, Interpolation of linear operators, Trans. Am. Math. Soc., 83, 482-492 (1956) · Zbl 0072.32402 · doi:10.1090/S0002-9947-1956-0082586-0
[30] Teschl, G., Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Surveys and Monographs (2000), Providence: American Mathematical Society, Providence · Zbl 1056.39029
[31] Thaller, B., The Dirac Equation (1992), Berlin: Springer, Berlin · Zbl 0881.47021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.