×

An asymptotic theory for the generation of nonlinear surface gravity waves by turbulent air flow. (English) Zbl 0883.76015

Based on a previous linear theory, turbulent air flow over a surface gravity wave of finite amplitude is studied analytically by the methods of matched asymptotic expansions and multiple-scale analysis. In particular, an initial-value problem for weakly nonlinear waves is solved, where the initial conditions are prescribed by a single Stokes wave, displacing the water surface. The water is inviscid and incompressible, and there is no mean shear current. Wave-wave interactions are not taken into account. The validity of the theory is restricted to slow waves and small drag coefficient.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A10 Meteorology and atmospheric physics
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] DOI: 10.1175/1520-0485(1992)022 2.0.CO;2 · doi:10.1175/1520-0485(1992)022 2.0.CO;2
[2] DOI: 10.1017/S0022112082001736 · Zbl 0487.76024 · doi:10.1017/S0022112082001736
[3] DOI: 10.1017/S0022112087000041 · Zbl 0616.76073 · doi:10.1017/S0022112087000041
[4] Chalikov, Dokl. Akad. Nauk. SSSR 229 pp 1083– (1976)
[5] DOI: 10.1175/1520-0485(1993)023 2.0.CO;2 · doi:10.1175/1520-0485(1993)023 2.0.CO;2
[6] DOI: 10.1256/smsqj.45105 · doi:10.1256/smsqj.45105
[7] DOI: 10.1017/S0022112059000568 · Zbl 0093.19106 · doi:10.1017/S0022112059000568
[8] DOI: 10.1017/S0022112094001710 · Zbl 0843.76017 · doi:10.1017/S0022112094001710
[9] DOI: 10.1017/S0022112093003350 · Zbl 0787.76032 · doi:10.1017/S0022112093003350
[10] Akylas, Stud. Appl. Maths 67 pp 1– (1982) · Zbl 0517.76044 · doi:10.1002/sapm19826711
[11] DOI: 10.1017/S0022112084002329 · Zbl 0554.76046 · doi:10.1017/S0022112084002329
[12] DOI: 10.1017/S0022112072002101 · Zbl 0243.76034 · doi:10.1017/S0022112072002101
[13] DOI: 10.1017/S0022112076001158 · Zbl 0339.76011 · doi:10.1017/S0022112076001158
[14] Fabrikant, Izv. Atmos. Oceanic Phys. 12 pp 524– (1976)
[15] DOI: 10.1017/S0022112092001393 · Zbl 0746.76011 · doi:10.1017/S0022112092001393
[16] DOI: 10.1017/S002211207400214X · Zbl 0279.76028 · doi:10.1017/S002211207400214X
[17] DOI: 10.1017/S0022112072001429 · Zbl 0228.76084 · doi:10.1017/S0022112072001429
[18] Charnock, Q. J. R. Met. Soc. 81 pp 639– (1955)
[19] DOI: 10.1017/S0022112078001767 · Zbl 0383.76089 · doi:10.1017/S0022112078001767
[20] DOI: 10.1017/S002211208000184X · Zbl 0452.76030 · doi:10.1017/S002211208000184X
[21] DOI: 10.1017/S0022112093002836 · Zbl 0783.76035 · doi:10.1017/S0022112093002836
[22] DOI: 10.1017/S0022112062000828 · Zbl 0106.41101 · doi:10.1017/S0022112062000828
[23] Miles, J. Fluid Mech. 13 pp 568– (1959)
[24] DOI: 10.1017/S0022112057000567 · Zbl 0078.40705 · doi:10.1017/S0022112057000567
[25] Makin, Meteorolgica i Gidrologia 11 pp 106– (1989)
[26] DOI: 10.1007/BF02166805 · doi:10.1007/BF02166805
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.