×

Growth and dissipation of wind-forced, deep-water waves. (English) Zbl 1287.76061

Summary: The input of energy by wind to water waves is compared with the observed growth of the waves using a suite of microphysical measurement techniques in the laboratory. These include measured tangential stresses in the water and air immediately adjacent to the interface with corresponding form drag measurements above wind-forced freely propagating waves. The drag data sets are consistent but the comparison has highlighted important issues in relation to the measurement of fluctuating pressures above freely propagating waves. Derived normalized wind input values show good collapse as a function of mean wave steepness and are significantly in excess of the assembly of net wave growth measurements by W. L. Peirson and A. W. Garcia [J. Fluid Mech. 608, 243–274 (2008; Zbl 1145.76307)] at low steepness. Sheltering coefficients in the form of H. Jeffreys [Proceedings Royal Soc. London (A) 107, 189–206 (1925; JFM 51.0673.04)] are derived that are consistent with values previously obtained by M. A. Donelan and W. J. Pierson [J. Geophys. Res. 92, 4971–5029 (1987)], A. Donelan [Wind-over-Wave Couplings: Perspectives and Prospects, Clarendon, 183–194 (1999; Zbl 1041.76516)] and A. Donelan et al. [J. Phys. Oceanogr. 36, 1672–1689 (2006)]. The sheltering coefficients exhibit substantial scatter. By carefully measuring the associated growth of the surface wave fields, systematic energy budgets for the interaction between wind and waves are obtained. For non-breaking waves, there is a significant and systematic misclose in the radiative transfer equation if wave-turbulence interactions are not included. Significantly higher levels of turbulent wave attenuation are found in comparison with the theoretical estimates by M. A. C. Teixeira and S. E. Belcher [J. Fluid Mech. 458, 229–267 (2002; Zbl 1112.76377)] and F. Ardhuin and A. D. Jenkins [J. Phys. Oceanogr. 36, 551–557 (2006)]. Suitable normalizations of attenuation for wind-forced wave fields exhibit consistent behaviour in the presence and absence of wave breaking. Closure of the surface energy flux budget is obtained by comparing the normalized energy loss rates due to breaking with the values previously determined by M. L. Banner and W. L. Peirson [J. Fluid Mech. 585, 93–115 (2007; Zbl 1178.76005)] and D. A. Drazen et al. [J. Fluid Mech. 611, 307–332 (2008; Zbl 1151.76387)] when expressed as a function of mean wave steepness. Their normalized energy loss rates obtained for non-wind forced breaking wave groups are remarkably consistent with the levels found during this present study when breaking waves are subject to wind forcing.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76-05 Experimental work for problems pertaining to fluid mechanics

References:

[1] DOI: 10.1017/S0022112001007078 · Zbl 0987.76507 · doi:10.1017/S0022112001007078
[2] DOI: 10.1017/S0022112069001364 · doi:10.1017/S0022112069001364
[3] DOI: 10.1146/annurev.marine.010908.163742 · doi:10.1146/annurev.marine.010908.163742
[4] DOI: 10.1038/417058a · doi:10.1038/417058a
[5] DOI: 10.1175/2517.1 · doi:10.1175/2517.1
[6] DOI: 10.1029/2007GL031242 · doi:10.1029/2007GL031242
[7] DOI: 10.1017/S0022112096007124 · doi:10.1017/S0022112096007124
[8] DOI: 10.1175/2007JPO3550.1 · doi:10.1175/2007JPO3550.1
[9] DOI: 10.1017/S0022112010000832 · Zbl 1197.76011 · doi:10.1017/S0022112010000832
[10] Deep-Sea Res. 11 pp 529– (1964)
[11] DOI: 10.1017/S0022112096008749 · doi:10.1017/S0022112096008749
[12] DOI: 10.1017/S0022112092000259 · Zbl 0759.76021 · doi:10.1017/S0022112092000259
[13] J. Fluid Mech. 458 pp 229– (2002)
[14] DOI: 10.1098/rspa.1969.0123 · doi:10.1098/rspa.1969.0123
[15] DOI: 10.1146/annurev-fluid-121108-145541 · Zbl 1345.76032 · doi:10.1146/annurev-fluid-121108-145541
[16] DOI: 10.1017/S0022112081002528 · doi:10.1017/S0022112081002528
[17] Dynamics and Modelling of Ocean Waves (1994) · Zbl 0816.76001
[18] DOI: 10.1017/S0022112067001508 · doi:10.1017/S0022112067001508
[19] Tohoku Geophys. J. 28 pp 69– (1981)
[20] DOI: 10.1175/JPO-D-11-072.1 · doi:10.1175/JPO-D-11-072.1
[21] Wind Stress Over the Ocean (2001) · Zbl 1072.86500
[22] DOI: 10.1007/s10546-007-9240-3 · doi:10.1007/s10546-007-9240-3
[23] DOI: 10.1088/0957-0233/16/10/011 · doi:10.1088/0957-0233/16/10/011
[24] DOI: 10.1109/36.739094 · doi:10.1109/36.739094
[25] DOI: 10.1098/rsta.1990.0098 · doi:10.1098/rsta.1990.0098
[26] DOI: 10.1098/rspa.1925.0015 · JFM 51.0673.04 · doi:10.1098/rspa.1925.0015
[27] The Interaction of Ocean Waves and Wind (2004)
[28] C. R. Acad. Sci. 282 pp 111– (1976)
[29] DOI: 10.1029/2004JC002342 · doi:10.1029/2004JC002342
[30] DOI: 10.1017/S0022112072000783 · doi:10.1017/S0022112072000783
[31] DOI: 10.1029/JC087iC03p01961 · doi:10.1029/JC087iC03p01961
[32] DOI: 10.1017/S0022112072000199 · doi:10.1017/S0022112072000199
[33] DOI: 10.1017/S0022112085002221 · Zbl 0603.76013 · doi:10.1017/S0022112085002221
[34] The Dynamics of the Upper Ocean (1977)
[35] DOI: 10.1017/S0022112083000294 · doi:10.1017/S0022112083000294
[36] DOI: 10.1098/rspa.1981.0127 · doi:10.1098/rspa.1981.0127
[37] DOI: 10.1017/S0022112003004750 · Zbl 1066.76011 · doi:10.1017/S0022112003004750
[38] J. Fluid Mech. 611 pp 307– (2008)
[39] J. Fluid Mech. 608 pp 243– (2008)
[40] DOI: 10.1017/S0022112009006120 · Zbl 1181.76005 · doi:10.1017/S0022112009006120
[41] Proc. Int. Conf. Coastal Engineering (2005)
[42] DOI: 10.1017/S0022112073002260 · doi:10.1017/S0022112073002260
[43] DOI: 10.1017/S002211206700045X · Zbl 0144.47101 · doi:10.1017/S002211206700045X
[44] DOI: 10.1017/S0022112094001710 · Zbl 0843.76017 · doi:10.1017/S0022112094001710
[45] DOI: 10.1029/JC092iC05p04971 · doi:10.1029/JC092iC05p04971
[46] DOI: 10.1017/S0022112074001583 · Zbl 0303.76004 · doi:10.1017/S0022112074001583
[47] DOI: 10.1175/JTECH1725.1 · doi:10.1175/JTECH1725.1
[48] DOI: 10.1017/S0022112002003336 · Zbl 1163.76311 · doi:10.1017/S0022112002003336
[49] DOI: 10.1017/S0022112007006568 · Zbl 1178.76005 · doi:10.1017/S0022112007006568
[50] DOI: 10.1175/JPO2933.1 · doi:10.1175/JPO2933.1
[51] Proc. Int. Conf. Coastal Engineering (2001)
[52] DOI: 10.1017/S0022112098001128 · Zbl 0979.76502 · doi:10.1017/S0022112098001128
[53] Sajjadi, Wind-over-Wave Couplings: Perspectives and Prospects pp 183– (1999)
[54] DOI: 10.1007/s003480050131 · doi:10.1007/s003480050131
[55] DOI: 10.1017/S0022112076002905 · doi:10.1017/S0022112076002905
[56] Le Méhauté, The Sea vol. 9A pp 239– (1990)
[57] DOI: 10.1063/1.1519260 · Zbl 1185.76420 · doi:10.1063/1.1519260
[58] Brutsaert, Gas Transfer at Water Surfaces (1984) · doi:10.1007/978-94-017-1660-4
[59] DOI: 10.1017/S0022112090001653 · doi:10.1017/S0022112090001653
[60] J. Oceanogr. Soc. Japan 23 pp 278– (1967)
[61] DOI: 10.1016/0377-0265(79)90037-X · doi:10.1016/0377-0265(79)90037-X
[62] DOI: 10.1017/S0022112082003139 · doi:10.1017/S0022112082003139
[63] DOI: 10.1175/JPO2862.1 · doi:10.1175/JPO2862.1
[64] DOI: 10.1175/1520-0485(1994)024&lt;2546:MWETIT&gt;2.0.CO;2 · doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2
[65] DOI: 10.1017/S0022112059000830 · Zbl 0092.44102 · doi:10.1017/S0022112059000830
[66] DOI: 10.1029/2008GL037030 · doi:10.1029/2008GL037030
[67] J. Geophys. Res. C7 pp 6607– (1981)
[68] DOI: 10.1017/S0022112075000687 · doi:10.1017/S0022112075000687
[69] DOI: 10.1017/S0022112057000567 · Zbl 0078.40705 · doi:10.1017/S0022112057000567
[70] DOI: 10.1017/S0022112088002927 · doi:10.1017/S0022112088002927
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.