×

Rain-induced attenuation of deep-water waves. (English) Zbl 1287.76020

Summary: A laboratory investigation has been undertaken to quantify water wave attenuation rates as a function of rainfall rate. Vertical artificial rainfall is shown to generate weak near-surface velocity fluctuations that decline systematically away from the free surface and are independent of rainfall rate across the range of rainfall rates investigated (40-170 mm h\(^{-1}\)). In the absence of rain, the observed attenuation of gravity waves is at levels consistent with classical viscous theory, but with a systematic finite-amplitude effect observed above a mean steepness of 0.10. Wave attenuation rates were found to be independent of the mean wave steepness and identical when artificial rainfall rates of 108 and 141 mm h\(^{-1}\) were applied. Reassessment of complementary theoretical and experimental studies of individual droplets impacting on undisturbed water surfaces indicates that above a weak threshold rainfall rate of 30 mm h\(^{-1}\), the surface irradiation becomes so frequent that droplet-generated violent surface motions directly interact with the incoming droplets. Present evidence is that a matching of time scales develops between the incoming surface irradiation and surface water motions generated by antecedent droplets as the rainfall rate increases. Consequently, at high rainfall rates, a highly dissipative surface regime is created that transmits little of the incident rainfall kinetic energy to the aqueous layers below. Rainfall-induced wave attenuation rates are compared with measurements of other wave attenuation processes to obtain a hierarchy of strength in both the laboratory and the field. Comparison is also made with wave attenuation theories that incorporate momentum and energy flux considerations. Rain-induced wave attenuation rates are weak or very strong depending on whether they are expressed in terms of energy scaling obtained from above or below the surface respectively, due to the high dissipation rate that occurs in the vicinity of the interface.

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] DOI: 10.1017/S002211206700045X · Zbl 0144.47101 · doi:10.1017/S002211206700045X
[2] DOI: 10.1080/03091927808242638 · Zbl 0399.76024 · doi:10.1080/03091927808242638
[3] DOI: 10.1146/annurev.fluid.30.1.507 · Zbl 1398.86006 · doi:10.1146/annurev.fluid.30.1.507
[4] DOI: 10.1029/JC095iC01p00749 · doi:10.1029/JC095iC01p00749
[5] J. Fluid Mech. 238 pp 133– (1992)
[6] DOI: 10.1017/S0022112094001710 · Zbl 0843.76017 · doi:10.1017/S0022112094001710
[7] DOI: 10.1175/1520-0485(1994)024&lt;2546:MWETIT&gt;2.0.CO;2 · doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2
[8] DOI: 10.1007/s00348-007-0406-z · doi:10.1007/s00348-007-0406-z
[9] DOI: 10.1175/1520-0485-32.9.2559 · doi:10.1175/1520-0485-32.9.2559
[10] DOI: 10.1023/A:1001796911059 · doi:10.1023/A:1001796911059
[11] DOI: 10.1029/JC095iC10p18353 · doi:10.1029/JC095iC10p18353
[12] DOI: 10.1017/S0022112007006568 · Zbl 1178.76005 · doi:10.1017/S0022112007006568
[13] J. Hydraul. Engng ASCE 124–6 pp 630– (1998)
[14] DOI: 10.1007/978-94-009-3017-9 · doi:10.1007/978-94-009-3017-9
[15] DOI: 10.1017/S0022112088002927 · doi:10.1017/S0022112088002927
[16] DOI: 10.1017/S0022112082003139 · doi:10.1017/S0022112082003139
[17] DOI: 10.1175/2010JPO4324.1 · doi:10.1175/2010JPO4324.1
[18] DOI: 10.1063/1.2055529 · Zbl 1187.76077 · doi:10.1063/1.2055529
[19] DOI: 10.1175/1520-0469(1948)005&lt;0165:TDORWS&gt;2.0.CO;2 · doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
[20] DOI: 10.1175/JPO2862.1 · doi:10.1175/JPO2862.1
[21] DOI: 10.1080/03091927308236119 · doi:10.1080/03091927308236119
[22] An Introduction to Turbulence and its Measurement (1971)
[23] DOI: 10.1029/94JC02715 · doi:10.1029/94JC02715
[24] Izv. Atmos. Ocean Phys. 7 pp 31– (1971)
[25] DOI: 10.1098/rspa.1994.0111 · Zbl 0832.76008 · doi:10.1098/rspa.1994.0111
[26] DOI: 10.1017/S0022112000002500 · Zbl 0968.76500 · doi:10.1017/S0022112000002500
[27] DOI: 10.1029/2008JC005008 · doi:10.1029/2008JC005008
[28] DOI: 10.1017/S0022112005006476 · Zbl 1081.76511 · doi:10.1017/S0022112005006476
[29] DOI: 10.1175/1520-0485(1990)020&lt;1805:DIOIRW&gt;2.0.CO;2 · doi:10.1175/1520-0485(1990)020<1805:DIOIRW>2.0.CO;2
[30] DOI: 10.1146/annurev.fluid.38.050304.092144 · Zbl 1097.76012 · doi:10.1146/annurev.fluid.38.050304.092144
[31] DOI: 10.1017/S0022112088003301 · Zbl 0655.76010 · doi:10.1017/S0022112088003301
[32] DOI: 10.1017/S0022112073002260 · doi:10.1017/S0022112073002260
[33] Proc. Intl Geosci. Remote Sens. Symp. (IGARSS)’00 pp 3175– (2000)
[34] DOI: 10.1175/1520-0426(1998)015&lt;0272:EOTADV&gt;2.0.CO;2 · doi:10.1175/1520-0426(1998)015<0272:EOTADV>2.0.CO;2
[35] Hydrodynamics (1932) · JFM 58.1298.05
[36] DOI: 10.1017/S0022112066000995 · doi:10.1017/S0022112066000995
[37] DOI: 10.1017/S0022112093001120 · doi:10.1017/S0022112093001120
[38] DOI: 10.1080/014311697219385 · doi:10.1080/014311697219385
[39] DOI: 10.1038/342893a0 · doi:10.1038/342893a0
[40] Wind Stress Over the Ocean (2001) · Zbl 1072.86500
[41] DOI: 10.1175/1520-0485(1992)022&lt;0404:TEORIC&gt;2.0.CO;2 · doi:10.1175/1520-0485(1992)022<0404:TEORIC>2.0.CO;2
[42] DOI: 10.1029/JC095iC09p16037 · doi:10.1029/JC095iC09p16037
[43] DOI: 10.1175/1520-0485(1987)017&lt;0938:WAWICI&gt;2.0.CO;2 · doi:10.1175/1520-0485(1987)017<0938:WAWICI>2.0.CO;2
[44] DOI: 10.1017/S0022112010000832 · Zbl 1197.76011 · doi:10.1017/S0022112010000832
[45] DOI: 10.1017/S0022112078000130 · Zbl 0365.76056 · doi:10.1017/S0022112078000130
[46] A First Course in Turbulence (1972)
[47] J. Fluid Mech. 458 pp 229– (2002)
[48] DOI: 10.1029/JC081i024p04482 · doi:10.1029/JC081i024p04482
[49] DOI: 10.1029/1999JC000280 · doi:10.1029/1999JC000280
[50] DOI: 10.1017/S0022112006003892 · Zbl 1108.76322 · doi:10.1017/S0022112006003892
[51] DOI: 10.1017/S0022112096001462 · Zbl 0875.76156 · doi:10.1017/S0022112096001462
[52] A S AE. 28 pp 1115– (1985)
[53] DOI: 10.1017/S0022112079002408 · doi:10.1017/S0022112079002408
[54] DOI: 10.1017/S0022112010003538 · Zbl 1205.76051 · doi:10.1017/S0022112010003538
[55] DOI: 10.1098/rsta.1990.0098 · doi:10.1098/rsta.1990.0098
[56] DOI: 10.1175/2009JPO4179.1 · doi:10.1175/2009JPO4179.1
[57] DOI: 10.1146/annurev.fl.25.010193.003045 · doi:10.1146/annurev.fl.25.010193.003045
[58] DOI: 10.1063/1.1652061 · Zbl 1186.76166 · doi:10.1063/1.1652061
[59] Turbulent Flows (2000) · Zbl 0966.76002
[60] DOI: 10.1017/S0022112083000294 · doi:10.1017/S0022112083000294
[61] DOI: 10.1175/1520-0485(1992)022&lt;0976:IBRAWW&gt;2.0.CO;2 · doi:10.1175/1520-0485(1992)022<0976:IBRAWW>2.0.CO;2
[62] DOI: 10.1098/rspa.1981.0127 · doi:10.1098/rspa.1981.0127
[63] DOI: 10.1017/S0022112003004750 · Zbl 1066.76011 · doi:10.1017/S0022112003004750
[64] J. Fluid Mech. 611 pp 307– (2008)
[65] DOI: 10.1029/2008JC005215 · doi:10.1029/2008JC005215
[66] J. Fluid Mech. 608 pp 243– (2008)
[67] Cox, Coastal Engineering 2000 pp 369– (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.