×

Consensus in the Hegselmann-Krause model. (English) Zbl 1490.60276

Summary: This paper is concerned with the probability of consensus in a multivariate, socially structured version of the Hegselmann-Krause model for the dynamics of opinions. Individuals are located on the vertices of a finite connected graph representing a social network, and are characterized by their opinion, with the set of opinions \(\Delta\) being a general bounded convex subset of a finite dimensional normed vector space. Having a confidence threshold \(\tau \), two individuals are said to be compatible if the distance (induced by the norm) between their opinions does not exceed the threshold \(\tau \). Each vertex \(x\) updates its opinion at rate the number of its compatible neighbors on the social network, which results in the opinion at \(x\) to be replaced by a convex combination of the opinion at \(x\) and the nearby opinions: \( \alpha\) times the opinion at \(x\) plus \((1 - \alpha)\) times the average opinion of its compatible neighbors. The main objective is to derive a lower bound for the probability of consensus when the opinions are initially independent and identically distributed with values in the opinion set \(\Delta \).

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory

References:

[1] Axelrod, R., The dissemination of culture: a model with local convergence and global polarization, J. Conflict Resolut., 41, 2, 203-226 (1997) · doi:10.1177/0022002797041002001
[2] Bramson, M.; Griffeath, D., Renormalizing the \(3\)-dimensional voter model, Ann. Probab., 7, 3, 418-432 (1979) · Zbl 0401.60107 · doi:10.1214/aop/1176995043
[3] Bramson, M.; Griffeath, D., Clustering and dispersion rates for some interacting particle systems on \({ Z}\), Ann. Probab., 8, 2, 183-213 (1980) · Zbl 0429.60098 · doi:10.1214/aop/1176994771
[4] Castellano, C.; Fortunato, S.; Loreto, V., Statistical physics of social dynamics, Rev. Mod. Phys., 81, 2, 591 (2009) · doi:10.1103/RevModPhys.81.591
[5] Clifford, P.; Sudbury, A., A model for spatial conflict, Biometrika, 60, 581-588 (1973) · Zbl 0272.60072 · doi:10.1093/biomet/60.3.581
[6] Cox, JT, Coalescing random walks and voter model consensus times on the torus in \({ Z}^d\), Ann. Probab., 17, 4, 1333-1366 (1989) · Zbl 0685.60100 · doi:10.1214/aop/1176991158
[7] Cox, JT; Griffeath, D., Diffusive clustering in the two-dimensional voter model, Ann. Probab., 14, 2, 347-370 (1986) · Zbl 0658.60131 · doi:10.1214/aop/1176992521
[8] Deffuant, G.; Neau, D.; Amblard, F.; Weisbuch, G., Mixing beliefs among interacting agents, Adv. Complex Syst., 3, 1-4, 87-98 (2000) · doi:10.1142/S0219525900000078
[9] Durrett, R.; Steif, JE, Fixation results for threshold voter systems, Ann. Probab., 21, 1, 232-247 (1993) · Zbl 0769.60092
[10] Galam, S., Minority opinion spreading in random geometry, Eur. Phys. J. B, 25, 4, 403-406 (2002)
[11] Häggström, O., A pairwise averaging procedure with application to consensus formation in the Deffuant model, Acta Appl. Math., 119, 185-201 (2012) · Zbl 1273.91408 · doi:10.1007/s10440-011-9668-9
[12] Hardin, M., Lanchier, N.: Probability of consensus in spatial opinion models with confidence threshold. ArXiv:1912.06746 · Zbl 1484.60110
[13] Hegselmann, R.; Krause, U., Opinion dynamics and bounded confidence models, analysis, and simulation, J. Artif. Soc. Soc. Simul., 5, 3, 3-33 (2002)
[14] Hirscher, T., The Deffuant model on \(\mathbb{Z}\) with higher-dimensional opinion spaces, ALEA Lat. Am. J. Probab. Math. Stat., 11, 1, 409-444 (2014) · Zbl 1302.60136
[15] Holley, RA; Liggett, TM, Ergodic theorems for weakly interacting infinite systems and the voter model, Ann. Probab., 3, 4, 643-663 (1975) · Zbl 0367.60115 · doi:10.1214/aop/1176996306
[16] Lanchier, N., The Axelrod model for the dissemination of culture revisited, Ann. Appl. Probab., 22, 2, 860-880 (2012) · Zbl 1245.60095 · doi:10.1214/11-AAP790
[17] Lanchier, N., The critical value of the Deffuant model equals one half, ALEA Lat. Am. J. Probab. Math. Stat., 9, 2, 383-402 (2012) · Zbl 1277.60178
[18] Lanchier, N.; Li, H-L, Probability of consensus in the multivariate Deffuant model on finite connected graphs, Electron. Commun. Probab., 25, 12 (2020) · Zbl 1477.60140 · doi:10.1214/20-ECP359
[19] Lanchier, N.; Neufer, J., Stochastic dynamics on hypergraphs and the spatial majority rule model, J. Stat. Phys., 151, 1-2, 21-45 (2013) · Zbl 1269.82043 · doi:10.1007/s10955-012-0543-5
[20] Lanchier, N.; Scarlatos, S., Fixation in the one-dimensional Axelrod model, Ann. Appl. Probab., 23, 6, 2538-2559 (2013) · Zbl 1286.60096 · doi:10.1214/12-AAP910
[21] Lanchier, N.; Scarlatos, S., Clustering and coexistence in the one-dimensional vectorial Deffuant model, ALEA Lat. Am. J. Probab. Math. Stat., 11, 1, 541-564 (2014) · Zbl 1301.60110
[22] Lanchier, N.; Scarlatos, S., Limiting behavior for a general class of voter models with confidence threshold, ALEA Lat. Am. J. Probab. Math. Stat., 14, 1, 63-92 (2017) · Zbl 1358.60103 · doi:10.30757/ALEA.v14-05
[23] Lanchier, N.; Schweinsberg, J., Consensus in the two-state Axelrod model, Stoch. Process. Appl., 122, 11, 3701-3717 (2012) · Zbl 1252.60094 · doi:10.1016/j.spa.2012.06.010
[24] Li, H.-L.: Mixed Hegselmann-Krause dynamics. ArXiv:2010.03050 · Zbl 1489.37114
[25] Li, H.-L.: Mixed Hegselmann-Krause dynamics – nondeterministic case. ArXiv:2105.00577 · Zbl 1489.37114
[26] Li, J.: Axelrod’s model in two dimensions. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)-Duke University (2014)
[27] Liggett, TM, Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (1985), New York: Springer-Verlag, New York · Zbl 0559.60078
[28] Liggett, TM, Coexistence in threshold voter models, Ann. Probab., 22, 2, 764-802 (1994) · Zbl 0814.60094 · doi:10.1214/aop/1176988729
[29] Liggett, TM, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der Mathematischen Wissenschaften (1999), Berlin: Springer-Verlag, Berlin · Zbl 0949.60006 · doi:10.1007/978-3-662-03990-8
[30] Vazquez, F.; Krapivsky, PL; Redner, S., Constrained opinion dynamics: freezing and slow evolution, J. Phys. A, 36, 3, L61-L68 (2003) · Zbl 1066.82035 · doi:10.1088/0305-4470/36/3/103
[31] Zähle, I., Renormalization of the voter model in equilibrium, Ann. Probab., 29, 3, 1262-1302 (2001) · Zbl 1023.60081 · doi:10.1214/aop/1015345603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.