×

Parameter estimation in modulated, unbranched reaction chains within biochemical systems. (English) Zbl 1087.92027

Summary: Modern biology is increasingly developing techniques for measuring time series of global gene expression and of many simultaneous proteins or metabolites. These data contain valuable information on the dynamics of cells, which has to be extracted with computational means. Given a suitable mathematical model, this extraction is in principle a straightforward regression task, but the complexity and nonlinearity of the differential equations that describe biological systems cause severe difficulties when the systems are of realistic size.
We propose a method of stepwise regression that can be applied effectively to linear portions of pathways. The method may be combined with other estimation methods and either directly yields reasonable parameter estimates or at least provides appropriate start values for subsequent nonlinear search algorithms. We illustrate the method with the analysis of in vivo NMR data describing the dynamics of glycolytic metabolites in Lactococcus lactis.

MSC:

92C40 Biochemistry, molecular biology
37N25 Dynamical systems in biology
Full Text: DOI

References:

[1] Albe, K. R.; Butler, M. H.; Wright, B. E., Cellular concentrations of enzymes and their substrates, J. Theor. Biol., 143, 163-195 (1989)
[2] Almeida, J. S.; Voit, E. O., Neural-network-based parameter estimation in complex biomedical systems, Genome Inform., 14, 114-123 (2003)
[3] Alvarez-Vasquez, F.; Sims, K. J.; Hannun, Y. A.; Voit, E. O., Integration of kinetic information on yeast sphingolipid metabolism in dynamical pathway models, J. Theor. Biol., 226, 265-291 (2004) · Zbl 1439.92099
[4] Burden, R. L.; Faires, J. D., Numerical Analysis (1993), PWS Publishing Co.: PWS Publishing Co. Boston, MA, pp. 156-167 · Zbl 0788.65001
[5] Clements, J. C.; Nenonen, J.; Li, P. K.; Horacek, B. M., Activation dynamics in anisotropic cardiac tissue via decoupling, Ann. Biomed. Eng., 32, 7, 984-990 (2004)
[6] Curto, R.; Voit, E. O.; Sorribas, A.; Cascante, M., Mathematical models of purine metabolism in man, Math. Biosci., 151, 1-49 (1998) · Zbl 0938.92015
[7] Ferreira, A.E.N., 1996. PLAS: http://www.dqb.fc.ul.pt/docentes/aferreira/plas.html.; Ferreira, A.E.N., 1996. PLAS: http://www.dqb.fc.ul.pt/docentes/aferreira/plas.html.
[8] Galazzo, J. L.; Bailey, J. E., Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae, Enzyme Microb. Technol., 12, 162-172 (1990)
[9] Hoefnagel, M. H.; Starrenburg, M. J.; Martens, D. E.; Hugenholtz, J.; Kleerebezem, M.; Van Swam, I. I.; Bongers, R.; Westerhoff, H. V.; Snoep, J. L., Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modeling, metabolic control and experimental analysis, Microbiology, 148, 1003-1013 (2002)
[10] Kimura, S.; Ide, K.; Kashihara, A.; Kano, M.; Hatakeyama, M.; Masui, R.; Nakagawa, N.; Yokoyama, S.; Kuramitsu, S.; Konagaya, A., Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm, Bioinformatics, 21, 1154-1163 (2005)
[11] Kikuchi, S.; Tominaga, D.; Arita, M.; Takahashi, K.; Tomita, M., Dynamic modeling of genetic networks using genetic algorithm and S-system, Bioinformatics, 19, 643-650 (2003)
[12] Maki, Y.; Ueda, T.; Okamoto, M.; Uematsu, N.; Inamura, Y.; Eguchi, Y., Inference of genetic network using the expression profile time course data of mouse P19 cells, Genome Inform., 13, 382-383 (2002)
[13] Naval, P. C.; Gonzales, O. R.; Mendoza, E.; Sison, L. G., Heuristic parameter estimation methods for S-system models of biochemical networks, (IEEE Conference HNICEM 2005. IEEE Conference HNICEM 2005, 17-20 March 2005, Manila, Philippines (2005))
[14] Neves, A.R., 2001. Metabolic Strategies to Reroute Carbon Fluxes in Lactococcus lactis; Neves, A.R., 2001. Metabolic Strategies to Reroute Carbon Fluxes in Lactococcus lactis
[15] Neves, A. R.; Ramos, A.; Nunes, M. C.; Kleerebezem, M.; Hugenholtz, J.; de Vos, W. M.; Almeida, J.; Santos, H., In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis, Biotechnol. Bioeng., 64, 2, 200-212 (1999)
[16] Neves, A. R.; Ramos, A.; Shearman, C.; Gasson, M. J.; Almeida, J. S.; Santos, H., Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo \(^{13} C\) NMR, Eur. J. Biochem., 267, 12, 3859-3868 (2000)
[17] Neves, A. R.; Ventura, R.; Mansour, N.; Shearman, C.; Gasson, M. J.; Maycock, C.; Ramos, A.; Santos, H., Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by \(^{13} C\) NMR, J. Biol. Chem., 277, 31, 28088-28098 (2002)
[18] Sands, P. J.; Voit, E. O., Flux-based estimation of parameters in S-systems, Ecol. Model., 93, 75-88 (1996)
[19] Savageau, M. A., Biochemical systems analysis. 1. Some mathematical properties of the rate law for the component enzymatic reactions, J. Theor. Biol., 25, 365-369 (1969)
[20] Savageau, M. A., Biochemical systems analysis. 2. The steady-state solutions for an \(n\)-pool system using a power law approximation, J. Theor. Biol., 25, 370-379 (1969)
[21] Savageau, M. A., Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology (1976), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0398.92013
[22] Segel, L. A., Biological Kinetics (1991), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0743.92017
[23] Schulz, A. R., Enzyme Kinetics. From Diastase to Multi-enzyme Systems (1994), Cambridge University Press: Cambridge University Press Cambridge, U.K
[24] (Stanbury, J. B.; Wyngaarden, J. B.; Fredrickson, D. S.; Goldstein, J. L.; Brown, M. S., The Metabolic Basis of Inherited Disease (1983), McGraw-Hill Book Company: McGraw-Hill Book Company Auckland, New York)
[25] Torralba, A. S.; Yu, K.; Shen, P.; Oefner, P. J.; Ross, J., Experimental test of a method for determining causal connectivities of species in reactions, Proc. Natl. Acad. Sci. U.S.A., 100, 1494-1498 (2003)
[26] Torres, N. V.; Voit, E. O., Pathway Analysis and Optimization in Metabolic Engineering (2002), Cambridge University Press: Cambridge University Press Cambridge, UK
[27] Tsai, K. Y.; Wang, F. S., Evolutionary optimization with data collocation for reverse engineering of biological networks, Bioinformatics, 21, 1180-1188 (2005)
[28] Vance, W.; Arkin, A. P.; Ross, J., Determination of causal connectivities of species in reaction networks, Proc. Natl. Acad. Sci. U.S.A., 99, 5816-5821 (2002)
[29] Veflingstad, S.R., Almeida, J.S., Voit, E.O., 2004. Priming nonlinear searches for pathway identification. BMC Theoretical Biology and Medical Modelling, PMID 15367330.; Veflingstad, S.R., Almeida, J.S., Voit, E.O., 2004. Priming nonlinear searches for pathway identification. BMC Theoretical Biology and Medical Modelling, PMID 15367330.
[30] (Voit, E. O., Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity (1991), Van Nostrand Reinhold: Van Nostrand Reinhold New York), xi+365 pp. · Zbl 0785.92004
[31] Voit, E. O., Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists (2000), Cambridge University Press: Cambridge University Press Cambridge, United Kingdom
[32] Voit, E. O.; Almeida, J., Dynamic profiling and canonical modeling: powerful partners in metabolic pathway identification, (Goodacre, R.; Harrigan, G. G., Metabolite Profiling: Its Role in Biomarker Discovery and Gene Function Analysis (2003), Kluwer Academic Publishing: Kluwer Academic Publishing Dordrecht, The Netherlands)
[33] Voit, E. O.; Almeida, J. S., Decoupling dynamical systems for pathway identification from metabolic profiles, Bioinformatics, 20, 11, 1670-1681 (2004)
[34] Voit, E. O.; Sands, P. J., Modeling forest growth. I. Canonical approach, Ecol. Model., 86, 51-71 (1996)
[35] Voit, E. O.; Savageau, M. A., Power-law approach to modeling biological systems. III. Methods of analysis, J. Ferment. Technol., 60, 3, 233-241 (1982)
[36] Volgin, V. M.; Volgina, O. V.; Davydov, A. D., Finite difference method of simulation of nonsteady-state ion transfer in electrochemical systems with allowance for migration, Comput. Biol. Chem., 27, 3, 185-196 (2003) · Zbl 1025.92016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.