×

Oppressed species can form a winning pair in a multi-species ecosystem. (English) Zbl 1510.92186

Summary: The self-protection of alliances against external invaders is a key concept behind the maintenance of biodiversity in the face of natural selection. But since these alliances, which can be formed by different numbers of competitors, can also compete against each other, it is important to identify their strengths and weaknesses. Here, we therefore compare the vitalities of two two-species alliances whose members either beat each other mutually via a bidirectional invasion or they exchange their positions during an inner dynamics. The resulting four-species model shows rich behavior in dependence on the model parameter \(p\), which characterizes the inner invasions, and \(\beta\), which determines the intensity of site exchanges. In the low \(p\) and the large \(p\) limit, when the inner invasion becomes biased, three-member rock-scissors-paper-type solutions emerge, where one of the members is oppressed by having the smallest average concentration due to heterogeneous inner invasion rates. Interestingly, however, if we allow a more intensive site exchange between the oppressed species, they can morph into a winning pair and dominate the full parameter plane. We show that their victory utilizes the vulnerability of the rival alliance based on cyclic dominance, where a species can easily fixate a limited-size domain.

MSC:

92D25 Population dynamics (general)
92D40 Ecology

References:

[1] Szabó, G.; Czárán, T., Defensive alliances in spatial models of cyclical population interactions, Phys. Rev. E, 64, 042902 (2001)
[2] Roman, A.; Dasgupta, D.; Pleimling, M., A theoretical approach to understand spatial organization in complex ecologies, J. Theor. Biol., 403, 10-16 (2016) · Zbl 1343.92549
[3] Nagatani, T.; Ichinose, G.; Tainaka, K.i., Heterogeneous network promotes species coexistence: metapopulation model for rock-paper-scissors game, Sci. Rep., 8, 7094 (2018)
[4] Szolnoki, A.; Perc, M., Reentrant phase transitions and defensive alliances in social dilemmas with informed strategies, EPL, 110, 38003 (2015)
[5] Palombi, F.; Ferriani, S.; Toti, S., Coevolutionary dynamics of a variant of the cyclic Lotka-Volterra model with three-agent interactions, Eur. Phys. J. B, 93, 194 (2020)
[6] Kim, B. J.; Liu, J.; Um, J.; Lee, S. I., Instability of defensive alliances in the predator-prey model on complex networks, Phys. Rev. E, 72, 041906 (2005)
[7] Park, J.; Do, Y.; Jang, B., Multistability in the cyclic competition system, Chaos, 28, 113110 (2018) · Zbl 1403.92336
[8] Mao, Y.; Xu, X.; Rong, Z.; Wu, Z. X., The emergence of cooperation-extortion alliance on scale-free networks with normalized payoff, EPL, 122, 50005 (2021)
[9] Wang, M.; Kang, H.; Shen, Y.; Sun, X.; Chen, Q., The role of alliance cooperation in spatial public goods game, Chaos, Solitons Fractals, 152, 111395 (2021) · Zbl 1498.91068
[10] Szolnoki, A.; Mobilia, M.; Jiang, L.-L.; Szczesny, B.; Rucklidge, A. M.; Perc, M., Cyclic dominance in evolutionary games: a review, J. R. Soc. Interface, 11, 20140735 (2014)
[11] Dobramysl, U.; Mobilia, M.; Pleimling, M.; Täuber, U. C., Stochastic population dynamics in spatially extended predator-prey systems, J. Phys. A, 51, 063001 (2018) · Zbl 1385.92041
[12] Han, X.; Chen, B.; Hui, C., Symmetry breaking in cyclic competition by niche construction, Appl. Math. Comput., 284, 66-78 (2016) · Zbl 1410.92155
[13] Tainaka, K.; Nakagiri, N.; Yokoi, H.; Sato, K., Multi-layered model for rock-paper-scissors game: aswarm intelligence sustains biodiversity, Ecol. Inform., 66, 101477 (2021)
[14] Szolnoki, A.; de Oliveira, B. F.; Bazeia, D., Pattern formations driven by cyclic interactions: abrief review of recent developments, EPL, 131, 68001 (2020)
[15] Szabó, G.; Szolnoki, A., Phase transitions induced by variation of invasion rates in spatial cyclic predator-prey models with four or six species, Phys. Rev. E, 77, 011906 (2008)
[16] Brown, B. L.; Meyer-Ortmanns, H.; Pleimling, M., Dynamically generated hierarchies in games of competition, Phys. Rev. E, 99, 062116 (2019)
[17] Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F., Interfaces with internal structures in generalized rock-paper-scissors models, Phys. Rev. E, 89, 042710 (2014)
[18] Park, J.; Jang, B., Robust coexistence with alternative competition strategy in the spatial cyclic game of five species, Chaos, 29, 051105 (2019) · Zbl 1415.92208
[19] Baker, R.; Pleimling, M., The effect of habitats and fitness on species coexistence in systems with cyclic dominance, J. Theor. Biol., 486, 110084 (2020)
[20] Vukov, J.; Szolnoki, A.; Szabó, G., Diverging fluctuations in a spatial five-species cyclic dominance game, Phys. Rev. E, 88, 022123 (2013)
[21] Avelino, P. P.; de Oliveira, B. F.; Trintin, R. S., Parity effects in rock-paper-scissors type models with a number of species \(N s \leq 12\), Chaos, Solitons Fractals, 155, 111738 (2022)
[22] Esmaeili, S.; Brown, B. L.; Pleimling, M., Perturbing cyclic predator-prey systems: how a six-species coarsening system with nontrivial in-domain dynamics responds to sudden changes, Phys. Rev. E, 98, 062105 (2018)
[23] Perc, M.; Szolnoki, A.; Szabó, G., Cyclical interactions with alliance specific heterogeneous invasion rates, Phys. Rev. E, 75, 052102 (2007)
[24] Blahota, M.; Blahota, I.; Szolnoki, A., Equal partners do better in defensive alliances, EPL, 131, 58002 (2020)
[25] de Oliveira, B. F.; Szolnoki, A., Competition among alliances of different sizes, Chaos, Solitons Fractals, 157, 111940 (2022)
[26] Tainaka, K., Indirect effect in cyclic voter models, Phys. Lett. A, 207, 53-57 (1995) · Zbl 1020.82606
[27] Frean, M.; Abraham, E. D., Rock-scissors-paper and the survival of the weakest, Proc. R. Soc. Lond. B, 268, 1323-1327 (2001)
[28] Berr, M.; Reichenbach, T.; Schottenloher, M.; Frey, E., Zero-one survival behavior of cyclically competing species, Phys. Rev. Lett, 102, 048102 (2009)
[29] Avelino, P. P.; de Oliveira, B. F.; Trintin, R. S., Predominance of the weakest species in Lotka-Volterra and May-Leonard formulations of the rock-paper-scissors model, Phys. Rev. E, 100, 042209 (2019)
[30] He, Q.; Mobilia, M.; Täuber, U. C., Spatial rock-paper-scissors models with inhomogeneous reaction rates, Phys. Rev. E, 82, 051909 (2010)
[31] Bazeia, D.; de Oliveira, B. F.; Silva, J. V.O.; Szolnoki, A., Breaking unidirectional invasions jeopardizes biodiversity in spatial May-Leonard systems, Chaos, Solitons Fractals, 141, 110356 (2020) · Zbl 1496.92083
[32] Avelino, P. P.; de Oliveira, B. F.; Trintin, R. S., Performance of weak species in the simplest generalization of the rock-paper-scissors model to four species, Phys. Rev. E, 101, 062312 (2020)
[33] Avelino, P. P.; de Oliveira, B. F.; Trintin, R. S., Weak species in rock-paper-scissors models, EPL, 134, 48001 (2021)
[34] https://doi.org/10.6084/m9.figshare.19354943.v1.
[35] Cox, J. T.; Griffeath, D., Diffusive clustering in the two dimensional voter model, Ann. Probab., 14, 347-370 (1986) · Zbl 0658.60131
[36] https://doi.org/10.6084/m9.figshare.19355261.v1.
[37] Szabó, G.; Santos, M. A.; Mendes, J. F.F., Vortex dynamics in a three-state model under cyclic dominance, Phys. Rev. E, 60, 3776-3780 (1999)
[38] Szabó, G.; Szolnoki, A., Three-state cyclic voter model extended with Potts energy, Phys. Rev. E, 65, 036115 (2002)
[39] Jiang, L.-L.; Wang, W.-X.; Huang, X.; Wang, B. H., Spiral waves emergence in a cyclic predator-prey model, (Zhou, J., Complex Sciences. Complex Sciences, Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, vol. 4 (2009), Springer: Springer Berlin, Heidelberg)
[40] Szolnoki, A.; Wang, Z.; Wang, J.; Zhu, X., Dynamically generated cyclic dominance in spatial prisoner’s dilemma games, Phys. Rev. E, 82, 036110 (2010)
[41] https://doi.org/10.6084/m9.figshare.19355276.v1.
[42] Bazeia, D.; de Oliveira, B. F.; Szolnoki, A., Invasion-controlled pattern formation in a generalized multispecies predator-prey system, Phys. Rev. E, 99, 052408 (2019)
[43] Szabó, G.; Sznaider, G. A., Phase transition and selection in a four-species predator-prey model, Phys. Rev. E, 69, 031911 (2004)
[44] Reichenbach, T.; Mobilia, M.; Frey, E., Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games, Nature, 448, 1046-1049 (2007)
[45] Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.; Santos, M. A., How directional mobility affects coexistence in rock-paper-scissors models, Phys. Rev. E, 97, 032415 (2018)
[46] Mobilia, M.; Rucklidge, A. M.; Szczesny, B., The influence of mobility rate on spiral waves in spatial rock-paper-scissors games, Games, 7, 24 (2016) · Zbl 1406.91022
[47] Nagatani, T.; Ichinose, G.; Tainaka, K.i., Metapopulation dynamics in the rock-paper-scissors game with mutation: effects of time-varying migration paths, J. Theor. Biol., 462, 425-431 (2019) · Zbl 1406.92512
[48] de Oliveira, B. F.; de Moraes, M. V.; Bazeia, D.; Szolnoki, A., Mobility driven coexistence of living organisms, Phys. A, 572, 125854 (2021)
[49] Szolnoki, A.; Perc, M., Costly hide and seek pays: unexpected consequences of deceit in a social dilemma, New J. Phys., 16, 113003 (2014)
[50] Canova, G. A.; Arenzon, J. J., Risk and interaction aversion: screening mechanisms in the prisoner’s dilemma game, J. Stat. Phys., 172, 279-292 (2018) · Zbl 1398.82033
[51] Szolnoki, A.; Chen, X., Alliance formation with exclusion in the spatial public goods game, Phys. Rev. E, 95, 052316 (2017)
[52] Hauert, C.; De Monte, S.; Hofbauer, J.; Sigmund, K., Volunteering as red queen mechanism for cooperation in public goods game, Science, 296, 1129-1132 (2002)
[53] Szolnoki, A.; Chen, X., Strategy dependent learning activity in cyclic dominant systems, Chaos, Solitons Fractals, 138, 109935 (2020) · Zbl 1490.92053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.