×

Practical finite-time adaptive sliding mode control for 5-link biped robot in the presence of uncertainty. (English) Zbl 1520.93476

Summary: In this paper, novel practical finite-time robust adaptive controllers are investigated for a 5-link single support phase (SSP) lower limb biped robot subjected to unknown physical and dynamical parameters, disturbances, and unknown input saturation. The developed adaptive approaches are based on a terminal sliding surface and a finite-time stability analysis to design controller and adaptation laws. The adaptive mechanisms deal with estimating unknown terms, the upper bound of the unknown term vector, or estimating the unknown limits of input saturation. Consequently, the proposed approach is applicable when the physical and dynamical parameters of the robot and the saturation input parameters are not known. In addition, the Lyapunov stability approach warranties that the tracking errors are robust finite-time uniformly ultimately bounded and provides the practical finite-time stability of the closed-loop system. Finally, numerical simulations are provided to show the feasibility, effectiveness, and performance enhancement of the proposed methods over state-of-the-art methods.

MSC:

93D40 Finite-time stability
93C40 Adaptive control/observation systems
93B12 Variable structure systems
93C85 Automated systems (robots, etc.) in control theory
Full Text: DOI

References:

[1] Uncategorized References
[2] Abooee, A.; Arefi, M. M.; Sedghi, F.; Abootalebi, V., Robust nonlinear control schemes for finite-time tracking objective of a 5-DOF robotic exoskeleton, International Journal of Control, 92, 9, 2178-2193 (2019) · Zbl 1421.93089 · doi:10.1080/00207179.2018.1430379
[3] Ahmed, S.; Wang, H.; Tian, Y., Modification to model reference adaptive control of 5-link exoskeleton with gravity compensation (20162729)
[4] Aldair, A. A.; Rashid, A. T.; Rashid, M. T.; Alsaedee, E. B., Adaptive fuzzy control applied to seven-link biped robot using ant colony optimization algorithm, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 43, 4, 797-811 (2019) · doi:10.1007/s40998-019-00201-x
[5] Baek, J.; Jin, M.; Han, S., A new adaptive sliding-mode control scheme for application to robot manipulators, IEEE Transactions on Industrial Electronics, 63, 6, 3628-3637 (2016) · doi:10.1109/TIE.2016.2522386
[6] Cao, Y.; Song, Y.-D., Adaptive PID-like fault-tolerant control for robot manipulators with given performance specifications, International Journal of Control, 93, 3, 377-386 (2020) · Zbl 1440.93125 · doi:10.1080/00207179.2018.1468928
[7] Doosti, P.; Mahjoob, M.; Dadashzadeh, B., Finite-time control strategy for the running of a telescopic leg biped robot, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 4, 196 (2019) · doi:10.1007/s40430-019-1697-8
[8] Ge, S. S.; Li, Z.; Yang, H., Data driven adaptive predictive control for holonomic constrained under-actuated biped robots, IEEE Transactions on Control Systems Technology, 20, 3, 787-795 (2011) · doi:10.1109/TCST.2011.2145378
[9] Ghasemi, H.; Rezaie, B.; Rahmani, Z., Terminal sliding mode control with evolutionary algorithms for finite-time robust tracking of nonholonomic systems, Journal of Information Technolog and Control, 47, 1, 26-44 (2018) · doi:10.5755/j01.itc.47.1.15031
[10] Heydari, R.; Farrokhi, M., Robust model predictive control of biped robots with adaptive on-line gait generation, International Journal of Control, Automation and Systems, 15, 1, 329-344 (2017) · doi:10.1007/s12555-014-0363-2
[11] Hu, Q., Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits, Nonlinear Dynamics, 55, 4, 301-321 (2009) · Zbl 1170.74338 · doi:10.1007/s11071-008-9363-1
[12] Janardhan, V.; Kumar, R. P., Online trajectory generation for wide ditch crossing of biped robots using control constraints, Robotics and Autonomous Systems, 97, 61-82 (2017) · doi:10.1016/j.robot.2017.07.014
[13] Khalil, H. K.; Grizzle, J. W., Nonlinear systems, 3 (2002), Prentice Hall · Zbl 1003.34002
[14] Khari, S.; Rahmani, Z.; Rezaie, B., Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch, Chinese Physics B, 25, 5, 050201 (2016) · doi:10.1088/1674-1056/25/5/050201
[15] Kong, L.; He, W.; Yang, W.; Li, Q.; Kaynak, O., Fuzzy approximation-based finite-time control for a robot with actuator saturation under time-varying constraints of work space, IEEE Transactions on Cybernetics (2021)
[16] Kumar, N.; Panwar, V.; Borm, J.-H.; Chai, J., Enhancing precision performance of trajectory tracking controller for robot manipulators using RBFNN and adaptive bound, Applied Mathematics and Computation, 231, 320-328 (2014) · Zbl 1410.93082 · doi:10.1016/j.amc.2013.12.082
[17] Li, Y.-X., Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems, Automatica, 106, 117-123 (2019) · Zbl 1429.93181 · doi:10.1016/j.automatica.2019.04.022
[18] Long, Y.; Du, Z.; Cong, L.; Wang, W.; Zhang, Z.; Dong, W., Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton, ISA Transactions, 67, 389-397 (2017) · doi:10.1016/j.isatra.2017.01.006
[19] Lu, K.; Xia, Y., Finite-time fault-tolerant control for rigid spacecraft with actuator saturations, IET Control Theory & Applications, 7, 11, 1529-1539 (2013) · doi:10.1049/iet-cta.2012.1031
[20] Mahmoodabadi, M. J.; Taherkhorsandi, M.; Bagheri, A., Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO, Neurocomputing, 124, 194-209 (2014) · doi:10.1016/j.neucom.2013.07.009
[21] Martínez-Fonseca, N.; Castañeda, LÁ; Uranga, A.; Luviano-Juárez, A.; Chairez, I., Robust disturbance rejection control of a biped robotic system using high-order extended state observer, ISA Transactions, 62, 276-286 (2016) · doi:10.1016/j.isatra.2016.02.003
[22] Mu, X.; Wu, Q., Development of a complete dynamic model of a planar five-link biped and sliding mode control of its locomotion during the double support phase, International Journal of Control, 77, 8, 789-799 (2004) · Zbl 1061.93522 · doi:10.1080/00207170410001705005
[23] Muñoz-Vázquez, A. J.; Sánchez-Torres, J. D.; Jiménez-Rodríguez, E.; Loukianov, A. G., Predefined-time robust stabilization of robotic manipulators, IEEE/ASME Transactions on Mechatronics, 24, 3, 1033-1040 (2019) · doi:10.1109/TMECH.2019.2906289
[24] Rahmani, B.; Belkheiri, M., Adaptive neural network output feedback control for flexible multi-link robotic manipulators, International Journal of Control, 92, 10, 2324-2338 (2019) · Zbl 1423.93179 · doi:10.1080/00207179.2018.1436774
[25] Rahmani, M.; Ghanbari, A.; Ettefagh, M. M., A novel adaptive neural network integral sliding-mode control of a biped robot using bat algorithm, Journal of Vibration and Control, 24, 10, 2045-2060 (2018) · doi:10.1177/1077546316676734
[26] Rezaie, B.; Khari, S., Adaptive intelligent terminal sliding mode controller for stabilizing a chaotic plasma torch system, Journal of Vibration and Control, 1077546320959520 (2020) · doi:10.1177/1077546320959520
[27] Sedghi, F.; Arefi, M. M.; Abooee, A.; Kaynak, O., Adaptive robust finite-time nonlinear control of a typical autonomous underwater vehicle with saturated inputs and uncertainties, IEEE/ASME Transactions on Mechatronics (2021) · doi:10.1109/TMECH.2020.3041613
[28] Si, W.; Dong, X.; Yang, F., Adaptive neural control for stochastic pure-feedback non-linear time-delay systems with output constraint and asymmetric input saturation, IET Control Theory & Applications, 11, 14, 2288-2298 (2017) · doi:10.1049/iet-cta.2017.0350
[29] Tang, Z.-L.; Ge, S. S.; Tee, K. P.; He, W., Adaptive neural control for an uncertain robotic manipulator with joint space constraints, International Journal of Control, 89, 7, 1428-1446 (2016) · Zbl 1353.93080 · doi:10.1080/00207179.2015.1135351
[30] Van, M.; Ge, S. S., Adaptive fuzzy integral sliding mode control for robust fault tolerant control of robot manipulators with disturbance observer, IEEE Transactions on Fuzzy Systems (2021) · doi:10.1109/TFUZZ.2020.2973955
[31] Wang, H.; Zhang, H.; Wang, Z.; Chen, Q., Finite-time stabilization of periodic orbits for under-actuated biped walking with hybrid zero dynamics, Communications in Nonlinear Science and Numerical Simulation, 80, 104949 (2020) · Zbl 1451.93343 · doi:10.1016/j.cnsns.2019.104949
[32] Wang, P.; Zhang, D.; Lu, B., ESO based sliding mode control for the welding robot with backstepping, International Journal of Control (2021) · Zbl 1478.93104 · doi:10.1080/00207179.2020.1762932
[33] Yang, L.; Liu, Z.; Chen, Y., Energy efficient walking control for biped robots using interval type-2 fuzzy logic systems and optimized iteration algorithm, ISA Transactions, 87, 143-153 (2019) · doi:10.1016/j.isatra.2018.11.018
[34] Yang, X.; Ge, S. S.; He, W., Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances, International Journal of Control, 91, 4, 969-988 (2018) · doi:10.1080/00207179.2017.1300837
[35] Yιlmaz, M.; Seven, U.; Erbatur, K., Biped robot walking control on inclined planes with fuzzy parameter adaptation, IFAC Proceedings Volumes, 43, 10, 288-293 (2010) · doi:10.3182/20100826-3-TR-4015.00054
[36] Yuan, J.; Stepenanko, Y., Computing a manipulator regressor without acceleration feedback, Robotica, 10, 3, 269-275 (1992) · doi:10.1017/S0263574700008006
[37] Zhang, J.-f.; Dong, Y.-m.; Yang, C.-j.; Geng, Y.; Chen, Y.; Yang, Y., 5-Link model based gait trajectory adaption control strategies of the gait rehabilitation exoskeleton for post-stroke patients, Mechatronics, 20, 3, 368-376 (2010) · doi:10.1016/j.mechatronics.2010.02.003
[38] Zhou, Z.; Tang, G.; Huang, H.; Han, L.; Xu, R., Adaptive nonsingular fast terminal sliding mode control for underwater manipulator robotics with asymmetric saturation actuators, Control Theory and Technology, 18, 1, 81-91 (2020) · Zbl 1463.93169 · doi:10.1007/s11768-020-9127-0
[39] Zhu, Z.; Xia, Y.; Fu, M., Attitude stabilization of rigid spacecraft with finite-time convergence, International Journal of Robust and Nonlinear Control, 21, 6, 686-702 (2011) · Zbl 1214.93100 · doi:10.1002/rnc.1624
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.