×

Multidimensional control systems: case studies in design and evaluation. (English) Zbl 1367.93293

Summary: Multidimensional control systems have been the subject of much productive research over more than three decades. In contrast to standard control systems, there has been much less reported on applications where the multidimensional setting is the only possible setting for design or produces implementations that perform to at least the same level. This paper addresses the latter area where case studies focusing on control law design and evaluation, including experimental results in one case, are reported. These demonstrate that movement towards the actual deployment of multidimensional control systems is increasing.

MSC:

93C35 Multivariable systems, multidimensional control systems
93C55 Discrete-time control/observation systems
93B51 Design techniques (robust design, computer-aided design, etc.)

References:

[1] Ahn, H.-A., Chen, Y. Q., & Moore, K. L. (2007). Iterative learning control: Brief survey and characterization. IEEE Transactions on Systems Man and Cybernetics Part C, 37(6), 1099-1121. · doi:10.1109/TSMCC.2007.905759
[2] Arimoto, S., Kawamura, S., & Miyazaki, F. (1984). Bettering operation of robots by learning. Journal of Robotic Systems, 2(1), 123-140. · doi:10.1002/rob.4620010203
[3] Bose, N. K. (1982). Applied multidimensional systems theory. New York: Van Nostrand Reinhold. · Zbl 0574.93031
[4] Bose, N. K., Buchberger, B., & Guiver, J. P. (2003). Multidimensional systems theory and applications. Berlin: Springer. · Zbl 1046.93001
[5] Bristow, D. A., Tharayil, M., & Alleyne, A. G. (2006). A survey of iterative learning control: A learning based method for high performance tracking control. IEEE Control Systems Magazine, 26(3), 96-114. · doi:10.1109/MCS.2006.1636313
[6] Cantrell, R. S., & Cosner, C. (2003). Spatial ecology via reaction-diffusion equations. London: Wiley. · Zbl 1059.92051
[7] Cichy, B., Galkowski, K., & Rogers, E. (2014). \[22\] D systems based robust iterative learning control using noncausal finite-time interval data. Systems and Control Letters, 64, 36-42. · Zbl 1283.93218 · doi:10.1016/j.sysconle.2013.11.002
[8] Crank, J. (1975). The mathematics of diffusion. Oxford: Oxford Science Publications, Oxford University Press. · Zbl 0071.41401
[9] Crossbow Inc., TelosB Mote Research Platform Datasheet [Online]. http://www.xbow.com/. · Zbl 0392.93034
[10] Dabkowski, P., Galkowski, K., Bachelier, O., & Rogers, E. (2012). Control of discrete linear repetitive processes using strong practical stability and \[H_{\infty }H\]∞ disturbance attenuation. Systems and Control Letters, 61(12), 1138-1144. · Zbl 1256.93061 · doi:10.1016/j.sysconle.2012.10.002
[11] Dabkowski, P., Galkowski, K., Rogers, E., & Kummert, A. (2009). Strong practical stability and stabilization of discrete linear repetitive processes. Multidimensional Systems and Signal Processing, 20, 311-331. · Zbl 1298.93261 · doi:10.1007/s11045-009-0080-9
[12] D’Andrea, R., & Dullerud, G. (2003). Distributed control design for spatially interconnected systems. IEEE Tranactions on Automatic Control, 48, 1478-1495. · Zbl 1364.93206
[13] Dewasurendra, D. A., Liang, Y., & Bauer, P. H. (2006). Distributed multidimensional evidence filtering. In Proceedings of the International Conference for Young Researchers (ICYR’06), Zielona Gora, Poland, CD Rom Proceedings. · Zbl 1112.68473
[14] Dewasurendra, DA; Bauer, PH; Premaratne, K.; Antsaklis, PJ (ed.); Tabuada, P. (ed.), Distributed evidence filtering in networked embedded systems, 183-198 (2006), Berlin · Zbl 1112.68473 · doi:10.1007/11533382_12
[15] Du, C., & Xie, L. (2002). \[H_{\infty }H\]∞control and filtering of two-dimenional systems (Vol. 278). Berlin: Springer LNCIS. · Zbl 1298.93261
[16] Edwards, J. B. (1974). Stability problems in the control of multipass processes. IEE Proceedings on Control Theory and Applications, 124(11), 1425-143.
[17] Edwards, J. B., & Greenberg, J. M. (1974). Longitudinal interaction in multipass processes. IEE Proceedings on Control Theory and Applications, 124(4), 385-392.
[18] Einicke, G., Ralston, J., Hargrave, C., Reid, D., & Hainsworth, D. (2008). Longwall mining automation: An application of minimum-variance smoothing. IEEE Control Systems Magazine, 28(6), 28-37. · Zbl 1395.93561 · doi:10.1109/MCS.2008.929281
[19] Emelianova, J., Pakshin, P., Galkowski, K., & Rogers, E. (2014). Stability of nonlinear \[22\] D systems described by the continuous-time Roesser model. Automation and Remote Control, 75(5), 845-858. · Zbl 1302.93181 · doi:10.1134/S000511791405004X
[20] Emelianova, J., Pakshin, P., Galkowski, K., & Rogers, E. (2015). Stability of nonlinear discrete repetitive processes with Markovian switching. Systems and Control Letters, 75, 108-116. · Zbl 1305.93200 · doi:10.1016/j.sysconle.2014.10.003
[21] Fagin, R., & Halpem, J. (1990). A new approach to updating beliefs. In Proceedinsg of the Sixth Annual Conference on Uncertainty in Artificial Intelligence (pp. 347-374). · Zbl 0742.68067
[22] Fornasini, E., & Marchesini, G. (1978). Doubly-indexed dynamical systems: State-space models and structural properties. Mathematical Systems Theory, 12(1), 59-72. · Zbl 0392.93034 · doi:10.1007/BF01776566
[23] Freeman, C. T., Lewin, P. L., & Rogers, E. (2007). Further results on the experimental evaluation of iterative learning control algorithms for non-minimum phase plants. International Journal of Control, 80(4), 569-582. · Zbl 1129.93432 · doi:10.1080/00207170601136726
[24] Freeman, C. T., Rogers, E., Hughes, A. M., Burridge, J. H., & Meadmore, K. L. (2012). Iterative learning control in healthcare electrical stimulation and robotic-assisted upper limb stroke rehabilitation. IEEE Control Systems Magazine, 32(1), 18-43. · Zbl 1395.93388 · doi:10.1109/MCS.2011.2173261
[25] Hladowski, L., Galkowski, K., Cai, Z., Rogers, E., Freeman, C. T., & Lewin, P. L. (2010). Experimentally supported \[22\] D systems based iterative learning control law design for error convergence and performance. Control Engineering Practice, 18(4), 339-348. · doi:10.1016/j.conengprac.2009.12.003
[26] Hladowski, L., Galkowski, K., Cai, Z., Rogers, E., Freeman, C. T., & Lewin, P. L. (2012). Output information based iterative learning control law design with experimental verification. Journal of Dynamic Systems, Measurement and Control, 134(2), 021012/1-021012/10. · doi:10.1115/1.4005038
[27] Kar, H., & Singh, V. (2001). Stability analysis of \[11\] D and \[22\] D fixed point state-space filters using any combination of overflow and quantization nonlinearities. IEEE Transactions on Signal Procesing, 49(5), 1095-1105.
[28] Kurek, J. E. (1995). Stability of nonlinear parameter-varying digital \[22\]-D systems. IEEE Transactions on Automatic Control, 40(8), 1428-1432. · Zbl 0836.93037 · doi:10.1109/9.402234
[29] Kurek, J. E., & Zaremba, M. B. (1993). Iterative learning control synthesis based on \[22\] D system theory. IEEE Transactions on Automatic Control, 38(1), 121-125. · Zbl 0773.93019 · doi:10.1109/9.186321
[30] Longman, R. W. (2000). Iterative learning control and repetitive control for engineering practice. International Journal of Control, 73(10), 930-954. · Zbl 1006.93598 · doi:10.1080/002071700405905
[31] Meadmore, K. L., Hughes, A. M., Freeman, C. T., Cai, Z., Tong, D., Burridge, J. H., et al. (2012). Functional electrical stimulation mediated by iterative learning control and \[33\] D robotics reduces motor impairment in chronic stroke. Journal of Neuroengineering and Rehabilitation, 9(32), 1-11.
[32] Mooney, M. A., & Adam, D. (2007). Vibratory roller integrated measurement of earthwork compaction: an overview. In Proceedings of the 7th International ASCE Symposium. Field Measurements in Geomechanics, CD Rom Proceedings.
[33] Moore, K. L., & Chen, Y-Q. (2006). Iterative learning control approach to a diffusion control problem in an irrigation application. In Proceedings of the International Conference on Mechatronics and Automation, Luoyang, P. R. China.
[34] Norrlof, M. & Gunnarsson, S. (1999). A frequency domain analysis of a second order iterative learning control algorithm. In Proceedings of the 38th Conference on Decision and Control (pp. 1587-1592).
[35] Paszke, W., Rogers, E., Galkowski, K., & Cai, Z. (2013). Robust finite frequency range iterative learning control design and experimental verification. Control Engineering Practice, 21(10), 1310-1320. · doi:10.1016/j.conengprac.2013.05.011
[36] Qin Liu, Q., Gonzalez M. A., & Werner, H. (2014). Distributed control of spatially-interconnected parameter-invariant and LPV models for actuated beams. In Proceedingss of 2014 American Control Conference (pp. 3381-3386).
[37] Rabenstein, R., & Trautmann, L. (2000). Models for continuous and discrete multidimensional systems. In Proceedings of the 2nd International Workshop on Multidimensional (nD) Systems (pp. 47-54). · Zbl 1038.93506
[38] Ratcliffe, J. D. (2005). Iterative learning control implemented on a multi-axis system. PhD Thesis, University of Southampton, UK · Zbl 0304.68099
[39] Ratcliffe, J. D., Lewin, P. L., Rogers, E., Hatonen, J. J., & Owens, D. H. (2006). Norm-optimal iterative learning control applied to gantry robots for automation applications. IEEE Transactions on Robotics, 22(6), 1303-1307. · doi:10.1109/TRO.2006.882927
[40] Recht, B., & D’Andrea, R. (2004). Distributed control of systems over discrete groups. IEEE Transactions on Automatic Contol, 49(9), 14461452. · Zbl 1365.93093
[41] Rocha, P., & Wood, J. (2001). Trajectory control and interconnection of \[11\] D and \[n\] nD systems. SIAM Journal on Control and Optimization, 40(1), 107-134. · Zbl 1030.93033 · doi:10.1137/S0363012999362797
[42] Roesser, R. P. (1975). A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control, AC-20, 1-10. · Zbl 0304.68099 · doi:10.1109/TAC.1975.1100844
[43] Rogers, E., Galkowski, K., Gramacki, A., Gramacki, J., & Owens, D. H. (2002). Stability and controllability of a class of \[22\] D linear systems with dynamic boundary conditions. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(2), 181-195. · Zbl 1368.93522 · doi:10.1109/81.983866
[44] Rogers, E., Galkowski, K., & Owens, D. H. (2007). Control systems theory and applications for linear repetitive processes (Vol. 349). Berlin: Springer LNCIS. · Zbl 1116.93005
[45] Rogers, E., & Owens, D. H. (1992). Stability analysis for linear repetitive processes (Vol. 175). Berlin: Springer LNCIS. · Zbl 0772.93072 · doi:10.1007/BFb0007165
[46] Sammons, P. M., Bristow, D. A., & Landers, R. G. (2013). Height dependent laser metal deposition process modeling. ASME Journal for Manufacturing Science and Engineering, 135(5), 054501-(1-7). · doi:10.1115/1.4025061
[47] Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press. · Zbl 0359.62002
[48] Soltanian, L. (2014). Distributed distant-downstream controller design for large-scale irrigation channels. PhD thesis, University of Melbourne, Australia.
[49] Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, A., Mainwaring, A., & Estrin, D. (2004). Habitat monitoring with sensor networks. Communications of the ACM, 47(6), 34-40. · doi:10.1145/990680.990704
[50] Wallen, J., Norrlof, M., & Gunnarsson, S. (2008). Arm-side evaluation of ILC applied to a six-degrees-of-freedom industrial robot. In Proceedings of 17th IFAC World Congress (pp. 13450-13455).
[51] Wallen, J., Gunnarsson, S., & Norrloff, M. (2013). Analysis of boundary effects in iterative learning control. International Journal of Control, 86(3), 410-415. · Zbl 1278.93299 · doi:10.1080/00207179.2012.733889
[52] Yeganefar, N., Yeganefar, N., Ghamgui, M., & Moulay, M. (2013). Lyapunov theory for \[22\]-D nonlinear Roesser models: Application to asymptotic and exponential stability. IEEE Transactions on Automatic Control, 58(5), 1299-1304. · Zbl 1369.93544 · doi:10.1109/TAC.2012.2220012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.