×

Convergence of the CR Yamabe flow. (English) Zbl 1497.32013

Summary: We consider the CR Yamabe flow on a compact strictly pseudoconvex CR manifold \(M\) of real dimension \(2n+1\). We prove convergence of the CR Yamabe flow when \(n=1\) or \(M\) is spherical.

MSC:

32V20 Analysis on CR manifolds
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.

References:

[1] Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55, 269-296 (1976) · Zbl 0336.53033
[2] Bahri, A., Coron, J.M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253-294 (1988) · Zbl 0649.35033 · doi:10.1002/cpa.3160410302
[3] Bramanti, M., Brandolini, L.: Schauder estimates for parabolic nondivergence operators of Hörmander type. J. Differ. Equ. 234, 177-245 (2007) · Zbl 1113.35033 · doi:10.1016/j.jde.2006.07.015
[4] Bramanti, M., Brandolini, L.: \[L^p\] Lp estimate for nonvariational hypoelliptic operators with VMO coefficients. Trans. Am. Math. Soc. 352, 781-822 (2000) · Zbl 0935.35037 · doi:10.1090/S0002-9947-99-02318-1
[5] Brendle, S.: Convergence of the Yamabe flow for arbitrary initial energy. J. Differ. Geom. 69, 217-278 (2005) · Zbl 1085.53028 · doi:10.4310/jdg/1121449107
[6] Brendle, S.: Convergence of the Yamabe flow in dimension 6 and higher. Invent. Math. 170, 541-576 (2007) · Zbl 1130.53044 · doi:10.1007/s00222-007-0074-x
[7] Chang, S.C., Cheng, J.H.: The Harnack estimate for the Yamabe flow on CR manifolds of dimension 3. Ann. Glob. Anal. Geom. 21, 111-121 (2002) · Zbl 1007.53034 · doi:10.1023/A:1014792304440
[8] Chang, S.C., Chiu, H.L., Wu, C.T.: The Li-Yau-Hamilton inequality for Yamabe flow on a closed CR 3-manifold. Trans. Am. Math. Soc. 362, 1681-1698 (2010) · Zbl 1192.32020 · doi:10.1090/S0002-9947-09-05011-9
[9] Chanillo, S., Chiu, H.L., Yang, P.: Embeddability for 3-dimensional Cauchy-Riemann manifolds and CR Yamabe invariants. Duke Math. J. 161, 2909-2921 (2012) · Zbl 1271.32040 · doi:10.1215/00127094-1902154
[10] Cheng, J.H., Chiu, H.L., Yang, P.: Uniformization of spherical CR manifolds. Adv. Math. 255, 182-216 (2014) · Zbl 1288.32051 · doi:10.1016/j.aim.2014.01.002
[11] Cheng, J.H., Malchiodi, A., Yang, P.: A positive mass theorem in three dimensional Cauchy-Riemann geometry. Adv. Math. 308, 276-347 (2017) · Zbl 1360.32031 · doi:10.1016/j.aim.2016.12.012
[12] Chow, B.: The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature. Commun. Pure Appl. Math. 45, 1003-1014 (1992) · Zbl 0785.53027 · doi:10.1002/cpa.3160450805
[13] Citti, G.: Semilinear Dirichlet problem involving critical exponent for the Kohn Laplacian. Ann. Mat. Pura Appl. (4) 169, 375-392 (1995) · Zbl 0848.35040 · doi:10.1007/BF01759361
[14] Citti, G., Uguzzoni, F.: Critical semilinear equations on the Heisenberg group: the effect of the topology of the domain. Nonlinear Anal. 46, 399-417 (2001) · Zbl 1199.35094 · doi:10.1016/S0362-546X(00)00138-3
[15] Dragomir, S., Tomassini, G.: Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics. 246. Birkhäuser Boston, Boston (2006) · Zbl 1099.32008
[16] Folland, G.: The tangential Cauchy-Riemann complex on spheres. Trans. Am. Math. Soc. 171, 83-133 (1972) · Zbl 0249.35013 · doi:10.1090/S0002-9947-1972-0309156-X
[17] Folland, G., Stein, E.: Estimates for the \[{\bar{\partial }}_b\]∂¯b complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429-522 (1974) · Zbl 0293.35012 · doi:10.1002/cpa.3160270403
[18] Gamara, N.: The CR Yamabe conjecture—the case \[n=1\] n=1. J. Eur. Math. Soc. 3, 105-137 (2001) · Zbl 0988.53013 · doi:10.1007/PL00011303
[19] Gamara, N., Yacoub, R.: CR Yamabe conjecture—the conformally flat case. Pac. J. Math. 201, 121-175 (2001) · Zbl 1054.32020 · doi:10.2140/pjm.2001.201.121
[20] Habermann, L.: Conformal metrics of constant mass. Calc. Var. Partial Differ. Equ. 12, 259-279 (2001) · Zbl 1037.53014 · doi:10.1007/PL00009914
[21] Habermann, L., Jost, J.: Green functions and conformal geometry. J. Differ. Geom. 53, 405-433 (1999) · Zbl 1071.53023 · doi:10.4310/jdg/1214425634
[22] Hamilton, R.S.: The Ricci flow on surfaces. Contemp. Math. Am. Math. Soc. (Providence, RI) 71, 237-262 (1988) · Zbl 0663.53031 · doi:10.1090/conm/071/954419
[23] Ho, P.T.: Result related to prescribing pseudo-Hermitian scalar curvature. Int. J. Math. 24, 29 (2013) · Zbl 1267.32034 · doi:10.1142/S0129167X13500201
[24] Ho, P.T.: The long time existence and convergence of the CR Yamabe flow. Commun. Contemp. Math. 14, 50 (2012) · Zbl 1246.53087 · doi:10.1142/S0219199712500149
[25] Ho, P.T.: The Webster scalar curvature flow on CR sphere. Part I. Adv. Math. 268, 758-835 (2015) · Zbl 1301.32028 · doi:10.1016/j.aim.2014.10.005
[26] Jerison, D., Lee, J.M.: Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Am. Math. Soc. 1, 1-13 (1988) · Zbl 0634.32016 · doi:10.1090/S0894-0347-1988-0924699-9
[27] Jerison, D., Lee, J.M.: Intrinsic CR normal coordinates and the CR Yamabe problem. J. Differ. Geom. 29, 303-343 (1989) · Zbl 0671.32016 · doi:10.4310/jdg/1214442877
[28] Jerison, D., Lee, J.M.: The Yamabe problem on CR manifolds. J. Differ. Geom. 25, 167-197 (1987) · Zbl 0661.32026 · doi:10.4310/jdg/1214440849
[29] Lee, J.M.: The Fefferman metric and pseudo-Hermitian invariants. Trans. Am. Math. Soc. 296, 411-429 (1986) · Zbl 0595.32026
[30] Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17, 37-91 (1987) · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[31] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479-495 (1984) · Zbl 0576.53028 · doi:10.4310/jdg/1214439291
[32] Schwetlick, H., Struwe, M.: Convergence of the Yamabe flow for “large” energies. J. Reine Angew. Math. 562, 59-100 (2003) · Zbl 1079.53100
[33] Simon, L.: Asymptotics for a class of non-linear evolution equations with applications to geometric problems. Ann. Math. (2) 118, 525-571 (1983) · Zbl 0549.35071 · doi:10.2307/2006981
[34] Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511-517 (1984) · Zbl 0535.35025 · doi:10.1007/BF01174186
[35] Tanaka, N.: A differential geometric study on strongly pseudo-convex manifolds. Kinokuniya, Tokyo (1975) · Zbl 0331.53025
[36] Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa (3) 22, 265-274 (1968) · Zbl 0159.23801
[37] Wang, W.: Canonical contact forms on spherical CR manifolds. J. Eur. Math. Soc. 5, 245-273 (2003) · Zbl 1048.53018 · doi:10.1007/s10097-003-0050-8
[38] Webster, S.M.: Pseudohermitian structures on a real hypersurface. J. Differ. Geom. 13, 25-41 (1978) · Zbl 0379.53016 · doi:10.4310/jdg/1214434345
[39] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21-37 (1960) · Zbl 0096.37201
[40] Ye, R.: Global existence and convergence of Yamabe flow. J. Differ. Geom. 39, 35-50 (1994) · Zbl 0846.53027 · doi:10.4310/jdg/1214454674
[41] Zhang, Y.: The contact Yamabe flow. Ph.D. thesis, University of Hanover (2006) · Zbl 1297.53007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.