×

On equicontinuous factors of linear extensions of minimal dynamical systems. (English. Russian original) Zbl 0812.58070

Ukr. Math. J. 45, No. 2, 249-254 (1993); translation from Ukr. Mat. Zh. 45, No. 2, 233-238 (1993).
Let \((\Omega, \{T_ t\}_{t \in \mathbb{R}})\) be a flow on a compact metric space \(\Omega\). Given a cocycle \(\Phi : \Omega \times \mathbb{R} \to \text{GL}(n, \mathbb{R})\), consider the skew product extension \((\mathbb{R}^ n \times \Omega, \{\widehat{T}_ t\}_{t \in \mathbb{R}})\), where \(\widehat{T}_ t(v,\omega) = (\Phi (\omega, t)v, T_ t \omega)\). Let \(B = \{(v,\omega) \in \mathbb{R}^ n \times \Omega \mid\) the set \(\{\Phi(\omega, t)v \mid t \in \mathbb{R}\}\) is bounded}. In general \(B\) is not a vector subbundle of the vector bundle \(\mathbb{R}^ n \times \Omega\), and it is well known that it is so if and only if \(B\) satisfies the “Faward property”.
In this paper the author considers a subset \(D\) of \(B\) defined by \(D = \{(v,\omega) \in B \mid\) the orbit closure of \((v,\omega)\) under the skew product flow is a distal extension of the base flow}.
The main theorem of the paper says that the set \(D\) is a subbundle if the base flow is minimal.

MSC:

37C10 Dynamics induced by flows and semiflows
Full Text: DOI

References:

[1] L. Auslander and F. Hahn, ?Real functions coming from flows on compact spaces of almost periodicity,?Trans. Amer. Math. Soc.,106, 415-426 (1963). · Zbl 0118.38904 · doi:10.1090/S0002-9947-1963-0144325-8
[2] I. U. Bronshtein,Extensions of Minimal Transformations of Groups [in Russian], Stiinta, Kishinev (1975).
[3] B. M. Levitan and V. V. Zhikov,Almost Periodic Functions and Differential Equations [in Russian], Moscow State University, Moscow (1978). · Zbl 0414.43008
[4] R. J. Sakers and G. R. Sell, ?Existence of dichotomies and invariant splittings for linear differential systems, III,?J. Diff. Equal.,22, 497-522 (1976). · Zbl 0338.58016 · doi:10.1016/0022-0396(76)90043-7
[5] V.A. Glavan, ?The structure of linear extensions with Favard-type conditions,? Ukr. Mat. Zh.,44, 596-604 (1992). · Zbl 0782.34014 · doi:10.1007/BF01056689
[6] Y. Hino, ?Recurrent solutions for linear almost periodic systems,? Func. Ekvac.,28, 117-119 (1985). · Zbl 0571.34030
[7] V. A. Glavan, ?Linear systems of differential equations with the additivity property of the recurrent solutions,? in:Asymptotic Solutions of Linear Equations with Small Parameters [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1991).
[8] V. A. Glavan, ?Structure of linear extensions with the Favard-type conditions. I. Linear extensions with additivity property for recurrent motions,?Ukr. Mat. Zh.,45, No. 4, 466-471, (1993). · Zbl 0807.17011 · doi:10.1007/BF01061020
[9] V. A. Glavan, ?Favard-type theorems without the Favard condition,? in:Discontinuous Dynamical Systems. Abstracts of Scientific Workshop (September 1991, Uzhgorod) [in Russian], Obshchestvo ?Znanie? Ukrainy, Kiev (1991).
[10] V. A. Glavan, ?On nilpotent-like linear extensions of minimal flows,? in:Simpozionul al VI-lea Tiraspolean de Topologie Generala si Aplicatiile ei (September, (1991)), Stiinta, Kishinev (1991).
[11] M. Atiyah,Lectures on K-Theory [Russian translation], Mir, Moscow (1967).
[12] I. U. Bronshtein,Nonautonomous Dynamical Systems [in Russian], Stiinta, Kishinev (1984).
[13] M. Rees, ?Tangential distal flows,?Israel J. Math.,35, 9-31 (1980). · Zbl 0438.58024 · doi:10.1007/BF02760936
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.