×

Energy based adaptive strategy for plates and laminates. (English) Zbl 1423.74914

Summary: The objective of this work is the development of a numerical solution strategy for energy-based mesh optimization based on a combined refinement strategy for laminated composite plates. In finite element computations that rely on the principle of minimum potetnial energy, the variational principle itself provides the basis of r-adaptive methods. The numerical solution can be improved by further minimizing the discrete potetnial energy with respect to material node point positions. A new adaptive scheme has been proposed and formulated for adaptive finite element analysis of laminates and plates. It involves a combination of the configurational force based \(r\)-adaption and mesh enrichment by \(h\)-refinement. These configurational forces are conjugate to the nodal motion and vanish when the potential energy is a minimum or at equilibrium. These forces are evaluated for laminates and plates by considering the weak form of the material force equilibrium. These forces assembled at nodes in a finite element discretization act as error indicators for \(r\)-adaption. The \(h\)-refinement is based on a modified patch recovery based estimator based on quantities of interest, enhanced by strain energy density ratios. Numerical study confirms that the proposed combined \(r - h\) adaption is more efficient than a purely \(h\)-adaptive approach and more flexible than a purely \(r\)-adaptive approach with better convergence characteristics.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
74A40 Random materials and composite materials
Full Text: DOI

References:

[1] DOI: 10.1002/nme.1620121010 · Zbl 0396.65068 · doi:10.1002/nme.1620121010
[2] DOI: 10.1002/nme.1620240206 · Zbl 0602.73063 · doi:10.1002/nme.1620240206
[3] DOI: 10.1002/nme.1620281209 · Zbl 0715.73041 · doi:10.1002/nme.1620281209
[4] DOI: 10.1002/nme.1620300812 · Zbl 0716.73084 · doi:10.1002/nme.1620300812
[5] DOI: 10.1002/nme.1620320409 · Zbl 0755.65119 · doi:10.1002/nme.1620320409
[6] DOI: 10.1002/nme.1620330702 · Zbl 0769.73084 · doi:10.1002/nme.1620330702
[7] DOI: 10.1002/nme.1620330702 · Zbl 0769.73084 · doi:10.1002/nme.1620330702
[8] DOI: 10.1016/j.cma.2004.07.053 · Zbl 1193.65192 · doi:10.1016/j.cma.2004.07.053
[9] DOI: 10.1007/BF00369880 · Zbl 0825.76513 · doi:10.1007/BF00369880
[10] DOI: 10.1016/0045-7949(92)90287-A · Zbl 0775.73247 · doi:10.1016/0045-7949(92)90287-A
[11] DOI: 10.1002/(SICI)1097-0207(19961115)39:21<3641::AID-NME17>3.0.CO;2-P · Zbl 0888.73060 · doi:10.1002/(SICI)1097-0207(19961115)39:21<3641::AID-NME17>3.0.CO;2-P
[12] DOI: 10.1002/nme.1620370508 · Zbl 0795.73069 · doi:10.1002/nme.1620370508
[13] Askes, H. and Rodriguez-Farran, A. 2000.An r-h Adaptive Strategy Based on Domain Subdivision and Error Assessment, 95–102. Edinburgh: Civil-Comp Press.
[14] DOI: 10.1002/nme.142 · Zbl 1031.74047 · doi:10.1002/nme.142
[15] DOI: 10.1016/0045-7949(90)90368-C · doi:10.1016/0045-7949(90)90368-C
[16] Uthman, Z. and Askes, H. r-adaptive and h-adaptive Mesh Optimisation Based on Error Assessment. 13th UK National ACME Conference. Edited by: Crouch, R. S. pp.127–130. University of Sheffield.
[17] DOI: 10.1016/0045-7825(93)90166-U · Zbl 0800.73405 · doi:10.1016/0045-7825(93)90166-U
[18] DOI: 10.1108/eb023808 · doi:10.1108/eb023808
[19] DOI: 10.1002/nme.1620290612 · Zbl 0713.73087 · doi:10.1002/nme.1620290612
[20] DOI: 10.1002/nme.1620350110 · Zbl 0775.73241 · doi:10.1002/nme.1620350110
[21] Lee S. H., Engineering Computations 11 pp 495– (1994) · Zbl 0824.73069 · doi:10.1108/02644409410799399
[22] DOI: 10.1016/0045-7949(94)90343-3 · Zbl 0900.73735 · doi:10.1016/0045-7949(94)90343-3
[23] DOI: 10.1002/nme.1620370707 · Zbl 0825.73768 · doi:10.1002/nme.1620370707
[24] DOI: 10.1016/S0045-7949(02)00099-8 · doi:10.1016/S0045-7949(02)00099-8
[25] DOI: 10.1016/S0045-7949(02)00448-0 · doi:10.1016/S0045-7949(02)00448-0
[26] DOI: 10.1007/BF02744106 · Zbl 1048.74586 · doi:10.1007/BF02744106
[27] DOI: 10.1002/nme.1620330408 · Zbl 0825.73827 · doi:10.1002/nme.1620330408
[28] DOI: 10.1016/0013-7944(94)E0058-O · doi:10.1016/0013-7944(94)E0058-O
[29] DOI: 10.1016/0168-874X(94)90082-5 · Zbl 0815.73001 · doi:10.1016/0168-874X(94)90082-5
[30] Thoutireddy P., PhD Thesis, in: Variational Arbitrary Lagrangian-Eulerian Method (2003)
[31] DOI: 10.1002/nme.1052 · Zbl 1079.74597 · doi:10.1002/nme.1052
[32] Braun M., Proc. Estonian Acad. Sci. Phys. Math 46 pp 24– (1997)
[33] DOI: 10.1007/BF00126994 · Zbl 0323.73011 · doi:10.1007/BF00126994
[34] DOI: 10.1115/1.3005101 · doi:10.1115/1.3005101
[35] DOI: 10.1016/S0020-7683(00)00203-1 · Zbl 0992.74008 · doi:10.1016/S0020-7683(00)00203-1
[36] DOI: 10.1007/s00466-002-0322-2 · Zbl 1053.74048 · doi:10.1007/s00466-002-0322-2
[37] DOI: 10.1002/nme.351 · Zbl 1114.74489 · doi:10.1002/nme.351
[38] Rajagopal A., Computer Assisted Mechanics and Engineering Sciences 12 pp 1– (2006)
[39] DOI: 10.1080/15502280500388169 · Zbl 1431.74050 · doi:10.1080/15502280500388169
[40] Gangadharan R., Journal of Computers Materials and Continua 1 pp 229– (2004)
[41] DOI: 10.1016/j.cma.2004.01.022 · Zbl 1067.74506 · doi:10.1016/j.cma.2004.01.022
[42] DOI: 10.1016/S0020-7683(00)00381-4 · Zbl 1066.74508 · doi:10.1016/S0020-7683(00)00381-4
[43] Steinmann, P., Kuhl, E. and Askes, H. August 2004.On Convexity Conditions in Spatial and Material Settings of HyperelasticityAugust, 15–21. Warsaw, Poland XXI ICTAM
[44] DOI: 10.1007/BF00042135 · Zbl 0945.74663 · doi:10.1007/BF00042135
[45] Kienzler R., Mechanics in Material Space with Applications to Defect and Fracture Mechanics (2000) · Zbl 0954.74001
[46] DOI: 10.1007/s00466-003-0543-z · Zbl 1115.74373 · doi:10.1007/s00466-003-0543-z
[47] DOI: 10.1002/(SICI)1097-0207(19961215)39:23<4039::AID-NME37>3.0.CO;2-C · Zbl 0882.73065 · doi:10.1002/(SICI)1097-0207(19961215)39:23<4039::AID-NME37>3.0.CO;2-C
[48] DOI: 10.1016/0045-7825(94)00699-N · Zbl 0851.73056 · doi:10.1016/0045-7825(94)00699-N
[49] Cook R. D., Concepts and applications of Finite Element Analysis,, 3. ed. (1988)
[50] DOI: 10.1002/nme.1620211207 · Zbl 0577.73063 · doi:10.1002/nme.1620211207
[51] Reddy J. N., Mechanics of Laminated Composites Plates and Shells (2003)
[52] Shewchuk J. R., Report–An Introduction to Conjugate Gradient Algorithm Without the Agonizing Pain (1994)
[53] DOI: 10.1002/nme.1620370309 · Zbl 0789.73064 · doi:10.1002/nme.1620370309
[54] Scherer Michael, Int J Fract (2007)
[55] DOI: 10.1007/s00466-007-0168-8 · Zbl 1162.74475 · doi:10.1007/s00466-007-0168-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.