×

S-version finite element strategy for accurately evaluating local stress in the vicinity of dynamically propagating crack front in 3D solid. (English) Zbl 1507.74024

Summary: Developing a numerical method to accurately simulate the brittle crack propagation phenomenon is crucial for ensuring the safety of large-scale steel structures. Although recent studies have demonstrated that using the local fracture stress criterion as the fracture condition is effective, the most critical issue is that the methods for evaluating local stress in the vicinity of the dynamically propagating crack front have not been established. To address this, this paper proposes a strategy for analysing a dynamically propagating crack in 3D solids on the basis of the s-version finite element method (s-method). In the proposed strategy, the local mesh is defined in the vicinity of the crack front as an ideal structured mesh aligned with both the crack front direction and crack propagation direction to accurately simulate the local stress field. The dynamically propagating crack front was modelled by a combination of the nodal force release method and local mesh update. The proposed strategy was verified by evaluating the accuracies of the local stress in stationary and dynamically propagating circular crack problems as well as those of the stress intensity factor. The results demonstrate that the proposed strategy provides unprecedented accuracy and efficiency of local stress evaluation in problems of dynamic crack propagation in a 3D solid without requiring any complicated remeshing procedures. Therefore, the proposed strategy has potential as the basis of a numeral framework for analysing dynamic brittle crack propagation problems dominated by the local fracture stress criterion.

MSC:

74A10 Stress
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74R10 Brittle fracture

References:

[1] International Association of Classification Societies, UR S33: Requirements for use of extremely thick steel plates (2015)
[2] International Association of Classification Societies, UR W31: Application of YP47 steel plates (2015)
[3] British Standard, BS 7777: Flat-bottomed, vertical, cylindrical storage tanks for low temperature service (1993)
[4] Pineau, A.; Benzerga, A. A.; Pardoen, T., Failure of metals I: Brittle and ductile fracture, Acta Mater., 107, 424-483 (2016)
[5] Kalthoff, J.; Beinert, J.; Winkler, S., Measurements of dynamic stress intensity factors for fast running and arresting cracks in double-cantilever-beam specimens, ASTM STP627, 161-176 (1977), URL http://www.astm.org/doiLink.cgi?STP27387S
[6] Kanazawa, T.; Machida, S.; Teramoto, T.; Yoshinari, H., Study on fast fracture and crack arrest, Exp. Mech., 21, 78-88 (1981)
[7] Shahani, A. R.; Amini Fasakhodi, M. R., Finite element analysis of dynamic crack propagation using remeshing technique, Mater. Des., 30, 1032-1041 (2009)
[8] Amini, M. R.; Shahani, A. R., Finite element simulation of dynamic crack propagation process using an arbitrary Lagrangian Eulerian formulation, Fatigue Fract. Eng. Mater. Struct., 36, 533-547 (2013)
[9] Imachi, M.; Tanaka, S.; Ozdemir, M.; Bui, T. Q.; Oterkus, S.; Oterkus, E., Dynamic crack arrest analysis by ordinary state-based peridynamics, Int. J. Fract., 221, 155-169 (2020)
[10] Susumu, M.; Hitoshi, Y.; Takeshi, K., Some recent experimental work in Japan on fast fracture and crack arrest, Eng. Fract. Mech., 23, 251-264 (1986)
[11] Rosakis, A. J.; Duffy, J.; Freund, L. B., The determination of dynamic fracture toughness of AISI 4340 steel by the shadow spot method, J. Mech. Phys. Solids., 32, 443-460 (1984)
[12] Ripling, E. J.; Crosley, P. B.; Wiersma, S. J., A review of static crack arrest concepts, Eng. Fract. Mech., 23, 21-33 (1986)
[13] Iung, T.; Pineau, A., Dynamic crack propagation and crack arrest investigated with a new specimen geometry: Part II: Experimental study on a low-alloy ferritic steel, Fatigue Fract. Eng. Mater. Struct., 19, 1369-1381 (1996)
[14] Bass, B. R.; Williams, P. T.; Pugh, C. E., An updated correlation for crack-arrest fracture toughness for nuclear reactor pressure vessel steels, Int. J. Press. Vessel. Pip., 82, 489-495 (2005)
[15] Grégoire, D.; Maigre, H.; Combescure, A., New experimental and numerical techniques to study the arrest and the restart of a crack under impact in transparent materials, Int. J. Solids Struct., 46, 3480-3491 (2009)
[16] Link, R. E.; Joyce, J. A.; Roe, C., Crack arrest testing of high strength structural steels for naval applications, Eng. Fract. Mech., 76, 402-418 (2009)
[17] Joyce, J. A.; Link, R. E.; Roe, C.; Sobotka, J. C., Dynamic and static characterization of compact crack arrest tests of navy and nuclear steels, Eng. Fract. Mech., 77, 337-347 (2010)
[18] Yanagimoto, F.; Shibanuma, K.; Suzuki, K.; Matsumoto, T.; Aihara, S., Local stress in the vicinity of the propagating cleavage crack tip in ferritic steel, Mater. Des., 144, 361-373 (2018)
[19] Shibanuma, K.; Yanagimoto, F.; Namegawa, T.; Suzuki, K.; Aihara, S., Brittle crack propagation/arrest behavior in steel plate - Part I: Model formulation, Eng. Fract. Mech., 162, 324-340 (2016)
[20] Shibanuma, K.; Yanagimoto, F.; Namegawa, T.; Suzuki, K.; Aihara, S., Brittle crack propagation/arrest behavior in steel plate - Part II: Experiments and model validation, Eng. Fract. Mech., 162, 341-360 (2016)
[21] Shibanuma, K.; Yanagimoto, F.; Suzuki, K.; Aihara, S., Brittle crack propagation/arrest behavior in steel plate - Part III: Discussions on arrest design, Eng. Fract. Mech., 190, 104-119 (2018)
[22] Berdin, C.; Hajjaj, M.; Bompard, P.; Bugat, S., Local approach to fracture for cleavage crack arrest prediction, Eng. Fract. Mech., 75, 3264-3275 (2008)
[23] Hajjaj, M.; Berdin, C.; Bompard, P.; Bugat, S., Analyses of cleavage crack arrest experiments: influence of specimen vibration, Eng. Fract. Mech., 75, 1156-1170 (2008)
[24] Prabel, B.; Marie, S.; Combescure, A., Using the X-FEM method to model the dynamic propagation and arrest of cleavage cracks in ferritic steel, Eng. Fract. Mech., 75, 2984-3009 (2008)
[25] Yang, X.; Marie, S.; Jacquemoud, C.; Bompard, P., Prediction of cleavage crack propagation path in a nuclear pressure vessel steel, Eng. Fract. Mech., 191, 486-503 (2018)
[26] Yanagimoto, F.; Shibanuma, K.; Nishioka, Y.; Shirai, Y.; Suzuki, K.; Matsumoto, T., Local stress evaluation of rapid crack propagation in finite element analyses, Int. J. Solids Struct., 144-145, 66-77 (2018)
[27] Fish, J., The s-version of the finite element method, Comput. Struct., 43, 539-547 (1992) · Zbl 0775.73247
[28] Berdin, C., 3D modeling of cleavage crack arrest with a stress criterion, Eng. Fract. Mech., 90, 161-171 (2012)
[29] Brickstad, B., A viscoplastic analysis of rapid crack propagation experiments in steel, J. Mech. Phys. Solids., 31, 307-327 (1983)
[30] Brickstad, B.; Nilsson, F., A dynamic analysis of crack propagation and arrest in pressurized thermal shock (PTS) experiments, Eng. Fract. Mech., 23, 99-102 (1986)
[31] Hudak, S. J.; Dexter, R. J.; Fitzgerald, J. H.; Kanninen, M. F., The influence of specimen boundary conditions on the fracture toughness of running cracks, Eng. Fract. Mech., 23, 201-213 (1986)
[32] Bass, B. R.; Pugh, C. E.; Walker, J. K., Elastodynamic fracture analysis of large crack-arrest experiments, Nucl. Eng. Des., 98, 157-169 (1987)
[33] Aoki, S.; Kishimoto, K.; Sakata, M., Finite element computation of dynamic stress intensity factor for a rapidly propagating crack using Ĵ-integral, Comput. Mech., 2, 54-62 (1987) · Zbl 0614.73101
[34] Shephard, M. S.; Yehia, N. A.B.; Burd, G. S.; Weidner, T. J., Automatic crack propagation tracking, Comput. Struct., 20, 211-223 (1985)
[35] Trädegård, A.; Nilsson, F.; Östlund, S., FEM-remeshing technique applied to crack growth problems, Comput. Methods Appl. Mech. Engrg., 160, 115-131 (1998) · Zbl 0938.74071
[36] Bouchard, P. O.; Bay, F.; Chastel, Y.; Tovena, I., Crack propagation modelling using an advanced remeshing technique, Comput. Methods Appl. Mech. Engrg., 189, 723-742 (2000) · Zbl 0993.74060
[37] Okada, H.; Kawai, H.; Araki, K., A virtual crack closure-integral method (VCCM) to compute the energy release rates and stress intensity factors based on quadratic tetrahedral finite elements, Eng. Fract. Mech., 75, 4466-4485 (2008)
[38] Branco, R.; Antunes, F. V.; Costa, J. D., A review on 3D-FE adaptive remeshing techniques for crack growth modelling, Eng. Fract. Mech., 141, 170-195 (2015)
[39] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 131-150 (1999) · Zbl 0955.74066
[40] Moës, N.; Gravouil, A.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets-Part I: Mechanical model, Internat. J. Numer. Methods Engrg., 53, 2549-2568 (2002) · Zbl 1169.74621
[41] Gravouil, A.; Moës, N.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets-Part II: Level set update, Internat. J. Numer. Methods Engrg., 53, 2569-2586 (2002) · Zbl 1169.74621
[42] Yanagimoto, F.; Shibanuma, K.; Matsumoto, T.; Suzuki, K., Governing factors of the local tensile stress in the vicinity of a rapidly propagating crack tip in elastic-viscoplastic solids, Eng. Fract. Mech., 218, Article 106548 pp. (2019)
[43] Kishi, K.; Takeoka, Y.; Fukui, T.; Matsumoto, T.; Suzuki, K.; Shibanuma, K., Dynamic crack propagation analysis based on the s-version of the finite element method, Comput. Methods Appl. Mech. Engrg., 366, Article 113091 pp. (2020) · Zbl 1442.74209
[44] Okada, H.; Liu, C. T.; Ninomiya, T.; Fukui, Y.; Kumazawa, N., Analysis of particulate composite materials using an element overlay technique, Comput. Model. Eng. Sci., 6, 333-347 (2004) · Zbl 1075.74079
[45] Fish, J.; Markolefas, S., Adaptive s-method for linear elastostatics, Comput. Methods Appl. Mech. Engrg., 104, 363-396 (1993) · Zbl 0775.73248
[46] Fish, J.; Markolefas, S.; Guttal, R.; Nayak, P., On adaptive multilevel superposition of finite element meshes for linear elastostatics, Appl. Numer. Math., 14, 135-164 (1994) · Zbl 0801.73068
[47] Yue, Z.; Robbins, D. H., Adaptive superposition of finite element meshes in elastodynamic problems, Internat. J. Numer. Methods Engrg., 63, 1604-1635 (2005) · Zbl 1156.74388
[48] Xu, Q.; Chen, J.; Yue, H.; Li, J., A study on the S-version FEM for a dynamic damage model, Internat. J. Numer. Methods Engrg., 115, 427-444 (2018) · Zbl 1540.74119
[49] Fish, J.; Markolefas, S., The s-version of the finite element method for multilayer laminates, Internat. J. Numer. Methods Engrg., 33, 1081-1105 (1992)
[50] Fish, J.; Guttal, R., The s-version of finite element method for laminated composites, Internat. J. Numer. Methods Engrg., 39, 3641-3662 (1996) · Zbl 0888.73060
[51] Fish, J.; Suvorov, A.; Belsky, V., Hierarchical composite grid method for global-local analysis of laminated composite shells, Appl. Numer. Math., 23, 241-258 (1997) · Zbl 0869.73070
[52] Angioni, S. L.; Visrolia, A.; Meo, M., A hierarchical multiple plate models theory for laminated composites including delamination and geometrical nonlinear effects, Compos. Struct., 93, 780-791 (2011)
[53] Angioni, S. L.; Visrolia, A.; Meo, M., Combining X-FEM and a multilevel mesh superposition method for the analysis of thick composite structures, Composites B, 43, 559-568 (2012)
[54] Jiao, Y.; Fish, J., Adaptive delamination analysis, Internat. J. Numer. Methods Engrg., 104, 1008-1037 (2015) · Zbl 1352.74023
[55] Jiao, Y.; Fish, J., On the equivalence between the s-method, the XFEM and the ply-by-ply discretization for delamination analyses of laminated composites, Int. J. Fract., 191, 107-129 (2015)
[56] Kumagai, Y.; Onodera, S.; Nagumo, Y.; Okabe, T.; Yoshioka, K., Multiscale modeling of free-surface effect on crack formation in unidirectional off-axis laminates, Composites A, 98, 136-146 (2017)
[57] Sakata, S.; Chan, Y.; Arai, Y., On accuracy improvement of microscopic stress/stress sensitivity analysis with the mesh superposition method for heterogeneous materials considering geometrical variation of inclusions, Internat. J. Numer. Methods Engrg., 121, 534-559 (2019) · Zbl 07843209
[58] Fish, J., Hierarchical modelling of discontinuous fields, Commun. Appl. Numer. Methods, 8, 443-453 (1992) · Zbl 0757.73054
[59] Okada, H.; Endoh, S.; Kikuchi, M., On fracture analysis using an element overlay technique, Eng. Fract. Mech., 72, 773-789 (2005)
[60] Fan, R.; Fish, J., The rs-method for material failure simulations, Internat. J. Numer. Methods Engrg., 73, 1607-1623 (2008) · Zbl 1159.74039
[61] monolis (2022), http://www.kz.tsukuba.ac.jp/ monolis (accessed August 29, 2021)
[62] Meyer, A.; Rabold, F.; Scherzer, M., Efficient finite element simulation of crack propagation using adaptive iterative solvers, Commun. Numer. Methods. Eng., 22, 93-108 (2006) · Zbl 1095.74042
[63] Fish, J.; Belytschko, T., A First Course in Finite Elements (2007), John Wiley & Sons, Ltd: John Wiley & Sons, Ltd Chichester, West Sussex, UK · Zbl 1135.74001
[64] Fardis, M. N., Seismic Design, Assessment and Retrofitting of Concrete Buildings (2009), Springer
[65] Puso, M. A., A 3D mortar method for solid mechanics, Internat. J. Numer. Methods Engrg., 59, 315-336 (2004) · Zbl 1047.74065
[66] Klöppel, T.; Popp, A.; Küttler, U.; Wall, W. A., Fluid-structure interaction for non-conforming interfaces based on a dual mortar formulation, Comput. Methods Appl. Mech. Engrg., 200, 3111-3126 (2011) · Zbl 1230.74185
[67] Zhou, M.; Zhang, B.; Chen, T.; Peng, C.; Fang, H., A three-field dual mortar method for elastic problems with nonconforming mesh, Comput. Methods Appl. Mech. Engrg., 362, Article 112870 pp. (2020) · Zbl 1439.74482
[68] Broberg, K. B., Cracks and Fracture (1999), Academic Press
[69] Kuna, M., Finite Elements in Fracture Mechanics Theory-Numerics-Applications (2010), Springer
[70] Yanagimoto, F.; Hemmi, T.; Suzuki, Y.; Takashima, Y.; Kawabata, T.; Shibanuma, K., Contribution of grain size to resistance against cleavage crack propagation in ferritic steel, Acta Mater., 177, 96-106 (2019)
[71] Shibanuma, K.; Suzuki, Y.; Kiriyama, K.; Suzuki, K.; Shirahata, H., A model of cleavage crack propagation in a BCC polycrystalline solid based on the extended finite element method, Acta Mater., 176, 232-241 (2019)
[72] Dally, J. W., Dynamic photoelastic studies of fracture, Exp. Mech., 19, 349-361 (1979)
[73] Ravi-Chandar, K.; Knauss, W. G., An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching, Int. J. Fract., 26, 141-154 (1984)
[74] Dally, J. W.; Fourney, W. L.; Irwin, G. R., On the uniqueness of the stress intensity factor? crack velocity relationship, Int. J. Fract., 27, 159-168 (1985)
[75] Freund, L. B., Dynamic Fracture Mechanics (1990), Cambridge University Press · Zbl 0712.73072
[76] Réthoré, J.; Gravouil, A.; Combescure, A., A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing, Comput. Methods Appl. Mech. Engrg., 193, 4493-4510 (2004) · Zbl 1112.74537
[77] Okada, H.; Ohata, S., Three-dimensional J-integral evaluation for cracks with arbitrary curvatures and kinks based on domain integral method for quadratic tetrahedral finite element, Eng. Fract. Mech., 109, 58-77 (2013)
[78] González-Albuixech, V. F.; Giner, E.; Tarancón, J. E.; Fuenmayor, F. J.; Gravouil, A., Domain integral formulation for 3-D curved and non-planar cracks with the extended finite element method, Comput. Methods Appl. Mech. Engrg., 264, 129-144 (2013) · Zbl 1286.74089
[79] Moran, B.; Shih, C. F., Crack tip and associated domain integrals from momentum and energy balance, Eng. Fract. Mech., 27, 615-642 (1987)
[80] Anderson, T. L., Fracture Mechanics (2017), CRC Press: CRC Press Boca Raton · Zbl 1360.74001
[81] Gosz, M.; Dolbow, J.; Moran, B., Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks, Int. J. Solids Struct., 35, 1763-1783 (1998) · Zbl 0936.74057
[82] Sneddon, I. N., The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 187, 229-260 (1946)
[83] Shibanuma, K.; Utsunomiya, T., Reformulation of XFEM based on PUFEM for solving problem caused by blending elements, Finite Elem. Anal. Des., 45 (2009)
[84] Shibanuma, K.; Utsunomiya, T.; Aihara, S., An explicit application of partition of unity approach to XFEM approximation for precise reproduction of a priori knowledge of solution, Internat. J. Numer. Methods Engrg., 97, 551-581 (2014) · Zbl 1352.65550
[85] Tada, H.; Paris, P. C.; Irwin, G. R., The Stress Analysis of Cracks Handbook (2000), ASME Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.