×

Multimesh finite element methods: solving PDEs on multiple intersecting meshes. (English) Zbl 1440.65214

Summary: We present a new framework for expressing finite element methods on multiple intersecting meshes: multimesh finite element methods. The framework enables the use of separate meshes to discretize parts of a computational domain that are naturally separate; such as the components of an engine, the domains of a multiphysics problem, or solid bodies interacting under the influence of forces from surrounding fluids or other physical fields. Such multimesh finite element methods are particularly well suited to problems in which the computational domain undergoes large deformations as a result of the relative motion of the separate components of a multi-body system. In the present paper, we formulate the multimesh finite element method for the Poisson equation. Numerical examples demonstrate the optimal order convergence, the numerical robustness of the formulation and implementation in the face of thin intersections and rounding errors, as well as the applicability of the methodology.
In the accompanying paper [“Multimesh finite elements with flexible mesh sizes”, Preprint, arXiv:1804.06455], we analyze the proposed method and prove optimal order convergence and stability.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

References:

[1] Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, (Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Vol. 36 (1971), Springer), 9-15 · Zbl 0229.65079
[2] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 4, 742-760 (1982) · Zbl 0482.65060
[3] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Math., 191, 47-48, 5537-5552 (2002) · Zbl 1035.65125
[4] Hansbo, A.; Hansbo, P.; Larson, M. G., A finite element method on composite grids based on Nitsche’s method, ESAIM-Math. Model. Numer., 37, 3, 495-514 (2003) · Zbl 1031.65128
[5] Burman, E.; Hansbo, P., A unified stabilized method for Stokes’ and Darcy’s equations, J. Comput. Appl. Math., 198, 1, 35-51 (2007) · Zbl 1101.76032
[6] Burman, E.; Fernández, M. A., Stabilized explicit coupling for fluid-structure interaction using Nitsche’s method, C. R. Math. Acad. Sci. Paris, 345, 8, 467-472 (2007) · Zbl 1126.74047
[7] Becker, R.; Burman, E.; Hansbo, P., A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity, Comput. Methods Appl. Mech. Engrg., 198, 41, 3352-3360 (2009) · Zbl 1230.74169
[8] Massing, A.; Larson, M. G.; Logg, A.; Rognes, M. E., A nitsche-based cut finite element method for a fluid-structure interaction problem, Commun. Appl. Math. Comput. Sci., 10 (2015) · Zbl 1326.74122
[9] Burman, E.; Claus, S.; Hansbo, P.; Larson, M. G.; Massing, A., CutFEM: Discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104, 7, 472-501 (2015) · Zbl 1352.65604
[10] Bordas, S. P.A.; Burman, E.; Larson, M. G.; Olshanskii, M. A., (Geometrically Unfitted Finite Element Methods and Applications. Geometrically Unfitted Finite Element Methods and Applications, Lecture Notes in Computational Science and Engineering, vol. 121 (2017), Springer International Publishing) · Zbl 1392.65006
[11] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: I. a stabilized lagrange multiplier method, Comput. Methods Appl. Mech. Engrg., 199, 41, 2680-2686 (2010) · Zbl 1231.65207
[12] Schillinger, D.; Ruess, M., The finite cell method: A review in the context of higher-order structural analysis of cad and image-based geometric models, Arch. Comput. Methods Eng., 22, 3, 391-455 (2015) · Zbl 1348.65056
[13] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Engrg., 197, 45, 3768-3782 (2008) · Zbl 1194.74517
[14] Parvizian, J.; Düster, A.; Rank, E., Finite cell method, Comput. Mech., 41, 1, 121-133 (2007) · Zbl 1162.74506
[15] Li, Z., The immersed interface method using a finite element formulation, Appl. Numer. Math., 27, 3, 253-267 (1998) · Zbl 0936.65091
[16] Fish, J., The s-version of the finite element method, Comput. Struct., 43, 3, 539-547 (1992) · Zbl 0775.73247
[17] Fish, J.; Markolefas, S.; Guttal, R.; Nayak, P., On adaptive multilevel superposition of finite element meshes for linear elastostatics, Appl. Numer. Math., 14, 1, 135-164 (1994) · Zbl 0801.73068
[18] Fries, T.-P.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84, 3, 253-304 (2010) · Zbl 1202.74169
[19] Chessa, J.; Smolinski, P.; Belytschko, T., The extended finite element method (xfem) for solidification problems, Internat. J. Numer. Methods Engrg., 53, 8, 1959-1977 (2002) · Zbl 1003.80004
[20] Lehrenfeld, C., High order unfitted finite element methods on level set domains using isoparametric mappings, Comput. Methods Appl. Mech. Engrg., 300, 716-733 (2016) · Zbl 1425.65168
[21] Bastian, P.; Engwer, C., An unfitted finite element method using discontinuous Galerkin, Internat. J. Numer. Methods Engrg., 79, 12, 1557-1576 (2009) · Zbl 1176.65131
[22] Johansson, A.; Larson, M. G., A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary, Numer. Math., 123, 4, 607-628 (2013) · Zbl 1269.65126
[23] Saye, R., Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part i, J. Comput. Phys., 344, Supplement C, 647-682 (2017) · Zbl 1380.76045
[24] Saye, R., Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part ii, J. Comput. Phys., 344, Supplement C, 683-723 (2017) · Zbl 1380.76046
[25] Bouclier, R.; Passieux, J.-C.; Salan, M., Local enrichment of nurbs patches using a non-intrusive coupling strategy: Geometric details, local refinement, inclusion, fracture, Comput. Methods Appl. Mech. Engrg., 300, 1-26 (2016) · Zbl 1425.65149
[26] Zander, N.; Bog, T.; Kollmannsberger, S.; Schillinger, D.; Rank, E., Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes, Comput. Mech., 55, 3, 499-517 (2015) · Zbl 1311.74133
[27] Schillinger, D.; Dedé, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of nurbs, immersed boundary methods, and t-spline cad surfaces, Comput. Methods Appl. Mech. Engrg., 249-252, 116-150 (2012), higher Order Finite Element and Isogeometric Methods · Zbl 1348.65055
[28] Rank, E., Adaptive remeshing and h-p domain decomposition, Comput. Methods Appl. Mech. Engrg., 101, 1, 299-313 (1992) · Zbl 0782.65145
[29] Becker, Roland; Hansbo, Peter; Stenberg, Rolf, A finite element method for domain decomposition with non-matching grids, ESAIM: M2AN, 37, 2, 209-225 (2003) · Zbl 1047.65099
[30] Appelö, D.; Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W., Numerical methods for solid mechanics on overlapping grids: Linear elasticity, J. Comput. Phys., 231, 18, 6012-6050 (2012) · Zbl 1277.74005
[31] Henshaw, W. D.; Schwendeman, D. W., Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement, J. Comput. Phys., 227, 16, 7469-7502 (2008) · Zbl 1213.76138
[32] Behr, M.; Tezduyar, T., The shear-slip mesh update method, Comput. Methods Appl. Mech. Engrg., 174, 3, 261-274 (1999) · Zbl 0959.76037
[33] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., Novel structural modeling and mesh moving techniques for advanced fluidstructure interaction simulation of wind turbines, Int. J. Numer. Methods Eng., 102, 3-4, 766-783 (2015) · Zbl 1352.76033
[34] Massing, A.; Larson, M. G.; Logg, A.; Rognes, M. E., A stabilized Nitsche overlapping mesh method for the Stokes problem, Numer. Math., 1-29 (2014) · Zbl 1426.76289
[35] Johansson, A.; Larson, M. G.; Logg, A., High order cut finite element methods for the Stokes problem, Adv. Model. Simul. Eng. Sci., 2, 1, 1-23 (2015)
[36] Massing, A.; Larson, M. G.; Logg, A., Efficient implementation of finite element methods on non-matching and overlapping meshes in 3d, SIAM J. Sci. Comput., 35, 1, C23-C47 (2013) · Zbl 1264.65194
[37] A. Johansson, B. Kehlet, A. Logg, Construction of quadrature rules on general polygonal and polyhedral domains in cut finite element methods, in preparation, 2018.
[38] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (2008), Springer: Springer New York · Zbl 1135.65042
[39] A. Johansson, B. Kehlet, M.G. Larson, A. Logg, MultiMesh Finite Element Methods: Analysis, submitted for publication. https://arxiv.org/abs/1804.06455, 2018. · Zbl 1440.65214
[40] de Prenter, F.; Verhoosel, C.; van Zwieten, G.; van Brummelen, E., Condition number analysis and preconditioning of the finite cell method, Comput. Methods Appl. Mech. Engrg., 316, 297-327 (2017), special Issue on Isogeometric Analysis: Progress and Challenges · Zbl 1439.65137
[41] Logg, A.; Mardal, K.-A.; Wells, G. N., (Logg, A.; Mardal, K. A.; Wells, G. N., Automated Solution of Differential Equations by the Finite Element Method (2012), Springer) · Zbl 1247.65105
[42] Alnæs, M. S.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M. E.; Wells, G. N., The fenics project version 1.5, Arch. Numer. Softw., 3, 100 (2015)
[43] Sudhakar, Y.; Wall, W. A., Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods, Comput. Methods Appl. Mech. Engrg., 258, Supplement C, 39-54 (2013) · Zbl 1286.65037
[44] Müller, B.; Kummer, F.; Oberlack, M., Highly accurate surface and volume integration on implicit domains by means of moment-fitting, Internat. J. Numer. Methods Engrg., 96, 8, 512-528 (2013) · Zbl 1352.65083
[45] Verhoosel, C.; van Zwieten, G.; van Rietbergen, B.; de Borst, R., Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone, Comput. Methods Appl. Mech. Engrg., 284, 138-164 (2015), isogeometric Analysis Special Issue · Zbl 1423.74929
[46] Saye, R., High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles, SIAM J. Sci. Comput., 37, 2, A993-A1019 (2015) · Zbl 1328.65070
[47] Akenine-Möller, T.; Haines, E.; Hoffman, N., Real-Time Rendering, 1045 (2008), A. K. Peters, Ltd.: A. K. Peters, Ltd. Natick, MA, USA
[48] Ericson, C., Real-Time Collision Detection (2004), CRC Press, Inc.: CRC Press, Inc. Boca Raton, FL, USA
[49] Shewchuk, J. R., Adaptive precision floating-point arithmetic and fast robust geometric predicates, Discrete Comput. Geom., 18, 3, 305-363 (1997) · Zbl 0892.68098
[50] Graham, R. L., An efficient algorithm for determining the convex hull of a finite planar set, Inform. Process. Lett., 1, 4, 132-133 (1972) · Zbl 0236.68013
[51] Mousavi, S. E.; Xiao, H.; Sukumar, N., Generalized gaussian quadrature rules on arbitrary polygons, Internat. J. Numer. Methods Engrg., 82, 1, 99-113 (2010) · Zbl 1183.65026
[52] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.8, Argonne National Laboratory, 2017.
[53] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[54] Henson, V. E.; Yang, U. M., Boomeramg: A parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41, 155-177 (2002) · Zbl 0995.65128
[55] Lawrence Livermore National Laboratory, hypre: High Performance Preconditioners, http://www.llnl.gov/CASC/hypre/, accessed 2018-03-14.
[56] Hernandez, V.; Roman, J. E.; Vidal, V., SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Softw., 31, 3, 351-362 (2005) · Zbl 1136.65315
[57] J.E. Roman, C. Campos, E. Romero, A. Tomas, SLEPc users manual, Tech. Rep. DSIC-II/24/02 - Revision 3.8, D. Sistemes Informàtics i Com- putació, Universitat Politècnica de València, 2017.
[58] J.S. Dokken, S.W. Funke, A. Johansson, S. Schmidt, Shape optimization on multiple meshes, submitted for publication, https://arxiv.org/abs/1806.09821, 2018. · Zbl 1432.35211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.