×

Determination of the steady-state response of viscoelastically supported rectangular orthotropic mass loaded plates by an energy-based finite difference method. (English) Zbl 1182.74066

Summary: A method based on a variational procedure in conjunction with a finite difference method is used to examine the free vibration characteristics and steady-state response to a sinusoidally varying force applied orthotropic elastic rectangular plate carrying masses. Using the energy-based finite difference method, the problem reduced to the solution of a system of algebraic equations. Due to the significance of the fundamental natural frequency of the plate, its variation is investigated with respect to the mechanical properties of the plate material, the translational spring coefficient of the supports, the mass distribution, the mass locations and the quantity of mass. The steady-state response of the viscoelastically supported plates was also investigated numerically for the damping coefficient of the supports and the force distribution in addition to the characteristics of the plate system. Many new results are presented and the validity of the present approach is demonstrated by comparing the results with other solutions based on the Kirchhoff-Love plate theory.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
74S20 Finite difference methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Aksu, G., Journal of Sound and Vibration 119 pp 189– (1987) · doi:10.1016/0022-460X(87)90448-2
[2] Aksu, G., Journal of Sound and Vibration 158 pp 531– (1992) · Zbl 0925.73900 · doi:10.1016/0022-460X(92)90423-U
[3] Altıntaş, G., Journal of Yildiz Technical University 4 pp 41– (2003)
[4] Amba-Rao, C., Journal of Applied Mechanics 31 pp 550– (1964) · Zbl 0133.43601 · doi:10.1115/1.3629680
[5] Cha, P., Journal of Sound and Vibration 207 pp 593– (1997) · doi:10.1006/jsvi.1997.1163
[6] Gorman, D., Journal of Sound and Vibration 139 pp 325– (1990) · Zbl 1235.74070 · doi:10.1016/0022-460X(90)90893-5
[7] Greshgorin, S., Prikladnaya Matematika i Mekhanika 1 pp 25– (1933)
[8] Kocatürk, T., Mechanics of Composite Materials 39 (5) pp 455– (2003) · doi:10.1023/B:MOCM.0000003296.49248.31
[9] Kocatürk, T., Journal of Sound and Vibration 267 pp 1143– (2003) · doi:10.1016/S0022-460X(03)00201-3
[10] Kopmaz, O., Journal of Sound and Vibration 251 pp 39– (2002) · doi:10.1006/jsvi.2001.3977
[11] Laura, P., Journal of Sound and Vibration 75 pp 135– (1981) · Zbl 0449.73088 · doi:10.1016/0022-460X(81)90241-8
[12] Li, W., Journal of Sound and Vibration 252 pp 768– (2002) · doi:10.1006/jsvi.2001.3990
[13] Magrab, E., Journal of Applied Mechanics 35 pp 411– (1968) · doi:10.1115/1.3601213
[14] Romanelli, E., Ocean Engineering 28 pp 1135– (2001) · doi:10.1016/S0029-8018(00)00040-8
[15] Singh, J., Computer Methods in Applied Mechanics and Engineering 97 pp 1– (1992) · Zbl 0775.73121 · doi:10.1016/0045-7825(92)90104-R
[16] Wong, W., Journal of Sound and Vibration 252 pp 577– (2002) · doi:10.1006/jsvi.2001.3947
[17] Wu, J., Journal of Sound and Vibration 200 pp 179– (1997) · doi:10.1006/jsvi.1996.0697
[18] Yamada, G., Journal of Sound and Vibration 102 pp 285– (1985) · doi:10.1016/S0022-460X(85)80060-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.