×

Tiling billiards and Dynnikov’s helicoid. (English) Zbl 1498.37047

Trans. Mosc. Math. Soc. 2021, 133-147 (2021) and Tr. Mosk. Mat. O.-va 82, No. 1, 157-174 (2021).
Summary: Here are two problems. First, understanding the dynamics of a tiling billiard in a cyclic quadrilateral periodic tiling. Second, describing the topology of connected components of plane sections of a centrally symmetric subsurface \(S \subset \mathbb{T}^3\) of genus 3. In this paper we show that these two problems are related via a helicoidal construction proposed recently by Ivan Dynnikov. The second problem is a particular case of a classical question formulated by Sergei Novikov. The exploration of the relationship between a large class of tiling billiards (periodic locally foldable tiling billiards) and Novikov’s problem in higher genus seems promising, as we show at the end of this paper.

MSC:

37C83 Dynamical systems with singularities (billiards, etc.)
37B52 Tiling dynamics
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)

Software:

NegSnell

References:

[1] Aichholzer Aichholzer O., Aurenhammer F., Alberts D., G\"artner B. A novel type of skeleton for polygons, J. Univ. Comp. Sci. 1995. Vol.1, No12. P.752-761. 1392429 · Zbl 0943.68171
[2] ArnouxRauzy1991 Arnoux P., Rauzy G. Repr\'esentation g\'eom\'etrique de suites de complexit\'e \(2n+1\), Bull. Soc. Math. France. 1991. Vol.119, No2. P.199-215. 1116845 · Zbl 0789.28011
[3] ArnouxStarosta2013 Arnoux P., Starosta \v S. The Rauzy gasket, Further developments in fractals and related fields. New York: Birkh\"auser/Springer, 2013. P.1-23. (Trends Math.) 3184185
[4] AvilaSkripchenkoHubert Avila A., Hubert P., Skripchenko A. On the Hausdorff dimension of the Rauzy gasket, Bull. Soc. Math. France. 2016. Vol.144, No3. P.539-568. 3558432 · Zbl 1356.37018
[5] Davis2018 Baird-Smith P., Davis D., Fromm E., Iyer S. Tiling billards on triangle tilings, and interval exchange transformations, Bull. London Math. Soc. 2020.
[6] Baragar1998 Baragar A. The exponent for the Markoff-Hurwitz equations, Pacific J. Math. 1998. Vol.182, No1. P.1-21. 1610610 · Zbl 0892.11009
[7] DavisNegative2018 Davis D., DiPietro K., Rustad J.T., St.Laurent A. Negative refraction and tiling billiards, Adv. Geom. 2018. Vol.18, No2. P.133-159. 3785417 · Zbl 1393.37048
[8] DavisHooper2016 Davis D., Hooper W.P. Periodicity and ergodicity in the trihexagonal tiling, Comment. Math. Helv. 2018. Vol.93, No4. P.661-707. 3880224 · Zbl 1411.37044
[9] DeLeo_2008 DeLeo R., Dynnikov I.A. Geometry of plane sections of the infinite regular skew polyhedron\(\4,6\mid 4\\) , Geom. Dedicata. 2009. Vol.138. P.51-67. 2469987 · Zbl 1165.28006
[10] Demaine Demaine E.D., O’Rourke J. Geometric folding algorithms. Linkages, origami, polyhedra. Cambridge: Cambridge Univ. Press, 2007. 2354878 · Zbl 1135.52009
[11] Dynnikov1999TheGO Dynnikov I. The geometry of stability regiones in Novikov’s problem on the semiclassical motion of an electron, Russian Math. Surveys. 1999. Vol.54, No1. P.21-59. 1706843 · Zbl 0935.57040
[12] DHMPRS2020 Dynnikov I., Hubert P., Mercat P., Paris-Romaskevich O., Skripchenko A. Novikov’s gasket has Lebesgue measure zero. Preprint, 2020.
[13] DHS Dynnikov I., Hubert P., Skripchenko A. Dynamical systems around the Rauzy gasket and their ergodic properties. Preprint, 2020.
[14] DS_band Dynnikov I., Skripchenko A. Symmetric band complexes of thin type and chaotic sections which are not quite chaotic, Trans. MMS. 2015. P.251-269. 3468067 · Zbl 1335.57042
[15] Fougeron20 Fougeron C. Dynamical properties of simplicial systems and continued fraction algorithms. Preprint, 2020. 2001.01367.
[16] Gamburd Gamburd A., Magee M., Ronan R. An asymptotic formula for integer points on Markoff-Hurwitz varieties, Ann. of Math. (2). 2019. Vol.190, No3. P.751-809. 4024562 · Zbl 1447.11051
[17] GutierrezMatheus19 Guti\'e R.rrez-Romo, Matheus C. Lower bounds on the dimension of the Rauzy gasket, Bull. Soc. Math. France. 2020. Vol.148, No2. P.321-327. 4124503 · Zbl 1451.37029
[18] HubertPaRo2019 Hubert P., Paris-Romaskevich O. Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket, Experimental Mathematics. 2019. P.1-30.
[19] Kenyon2018DimersAC Kenyon R., Lam W., Ramassamy S., Russkikh M. Dimers and circle patterns, arXiv: Math. phys., 2018.
[20] KOS2006 Kenyon R., Okounkov A., Sheffield S. Dimers and amoebae, Ann. of Math. (2). 2006. Vol.163, No3. P.1019-1056. 2215138 · Zbl 1154.82007
[21] MeNo Meester R., Nowicki T. Infinite clusters and critical values in two-dimensional circle percolation, Israel J. Math. 1989. Vol.68, No1. P.63-81. 1035881 · Zbl 0685.60104
[22] NoDyMa Novikov S.P., De Leo R., Dynnikov I.A., Mal’tsev A. Theory of dynamical systems and transport phenomena in normal metals, J. Exp. Theor. Phys. 2019. Vol.129, No4. P.710-721.
[23] DyNoquasi Novikov S.P., Dynnikov I.A. Topology of quasiperiodic functions on the plane, Russian Math. Surveys. 2005. Vol.60, No1. P.1-26. 2145658 · Zbl 1148.37043
[24] PaRo2019 Paris-Romaskevich O. Trees and flowers on a billiard table. Preprint, 2019. https://hal.archives-ouvertes.fr/hal-02169195.
[25] Zorich Zorich A. The quasiperiodic structure of level surfaces of a Morse 1-form close to a rational one — a problem of S.P.Novikov, Math. USSR-Izv. 1988. Vol.31, No3. P.635-655. 933967 · Zbl 0694.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.