×

On substitution automorphisms with pure singular spectrum. (English) Zbl 1502.37018

Let \(\mathcal{A}\) be an alphabet with \(d\geq2\) symbols. Let us denote by \(\mathcal{A}^+\) the set of non-empty finite words with letters in \(\mathcal{A}\).
A substitution \(\zeta\) is a self-map of \(\mathcal{A}^+\) that satisfies \(\zeta(a_1\dots a_n)=\zeta(a_1)\dots\zeta(a_n)\) for any word \(a_1\dots a_n\), where the \(a_i\)’s are letters in \(\mathcal{A}\). In particular, such a map is completely determined by the images of words with one letter.
The substitution space \(X_\zeta\) is the subspace of \(\mathcal{A}^\mathbb{Z}\) given by bi-infinite sequences such that any subword appears as a subword of some \(\zeta^n(a)\) for some \(a\in\mathcal{A}\) and \(n\in\mathbb{N}\). This subspace is shift-invariant and this gives the substitution dynamical system \((X_\zeta,T)\), where \(T\) is the shift.
The substitution matrix \(S = (S(i, j))\) is the \(d\times d\) matrix, such that \(S(i, j)\) is the number of symbols \(i\) in \(\zeta(j)\) where \(\mathcal{A}=\{1,\dots,d\}\). The substitution is primitive if this matrix has all entries strictly positive for some \(n\in\mathbb{N}\).
It is known that if the substitution is primitive, the system \((X_\zeta,T)\) is uniquely ergodic (see [M. Queffélec, Substitution dynamical systems. Spectral analysis. 2nd ed. Dordrecht: Springer (2010; Zbl 1225.11001)]). So one can consider the unitary operator of \(L^2(X_\zeta,\mu)\) associated to \(T\) where \(\mu\) is the spectrum of the unique invariant measure on \(X_\zeta\).
The main result of this paper is that the system has pure singular spectrum when the substitution is primitive aperiodic, \(S\) is irreducible and the logarithm of its Perron-Frobenius eigenvalue is strictly larger than twice the top Lyapunov exponent of the spectral cocycle.

MSC:

37B10 Symbolic dynamics
37B51 Multidimensional shifts of finite type
37B52 Tiling dynamics
37E05 Dynamical systems involving maps of the interval

Citations:

Zbl 1225.11001

References:

[1] Baake, M.; Frank, NP; Grimm, U.; Robinson, EA Jr, Geometric properties of a binary non-Pisot inflation and absence of absolutely continuous diffraction, Stud. Math., 247, 2, 109-154 (2019) · Zbl 1419.37017 · doi:10.4064/sm170613-10-3
[2] Baake, M.; Grimm, U., Squirals and beyond: substitution tilings with singular continuous spectrum, Ergod. Theory Dyn. Syst., 34, 1077-1102 (2014) · Zbl 1315.37015 · doi:10.1017/etds.2012.191
[3] Baake, M., Grimm, U., Mañibo, N.: Spectral analysis of a family of binary inflation rules. Lett. Math. Phys. 108(8), 1783-1805 (2018) · Zbl 1406.37014
[4] Baake, M.; Gähler, F.; Mañibo, N., Renormalisation of pair correlation measures for primitive inflation rules and absence of absolutely continuous diffraction, Commun. Math. Phys., 370, 2, 591-635 (2019) · Zbl 1433.37014 · doi:10.1007/s00220-019-03500-w
[5] Bartlett, A., Spectral theory of \({{\mathbb{Z}}}^d\) substitutions, Ergod. Theory Dyn. Syst., 38, 1289-1341 (2018) · Zbl 1388.37021 · doi:10.1017/etds.2016.66
[6] Berend, D.; Radin, C., Are there chaotic tilings?, Commun. Math. Phys., 152, 2, 215-219 (1993) · Zbl 0790.28011 · doi:10.1007/BF02098297
[7] Berlinkov, A.; Solomyak, B., Singular substitutions of constant length, Ergod. Theory Dyn. Syst., 39, 2384-2402 (2019) · Zbl 1422.37006 · doi:10.1017/etds.2017.133
[8] Boyd, DW, Kronecker’s theorem and Lehmer’s problem for polynomials in several variables, J. Number Theory, 13, 1, 116-121 (1981) · Zbl 0447.12003 · doi:10.1016/0022-314X(81)90033-0
[9] Bufetov, AI; Sinai, YG; Ulcigrai, C., A condition for continuous spectrum of an interval exchange transformation, Am. Math. Soc. Transl., 2, 217, 23-35 (2006) · Zbl 1109.37001
[10] Bufetov, AI, Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the Central Limit Theorem for the Teichmüller flow on the moduli space of Abelian differentials, J. Am. Math. Soc., 19, 3, 579-623 (2006) · Zbl 1100.37002 · doi:10.1090/S0894-0347-06-00528-5
[11] Bufetov, AI; Solomyak, B., On the modulus of continuity for spectral measures in substitution dynamics, Adv. Math., 260, 84-129 (2014) · Zbl 1339.37004 · doi:10.1016/j.aim.2014.04.004
[12] Bufetov, A.I., Solomyak, B.: A spectral cocycle for substitution systems and translation flows. J. Anal. Math. 141(1), 165-205 (2020) · Zbl 1462.37025
[13] Camelier, R.; Guttierez, C., Affine interval exchange transformations with wandering intervals, Ergod. Theory Dyn. Syst., 17, 6, 1315-1338 (1997) · Zbl 0895.58019 · doi:10.1017/S0143385797097666
[14] Chan, L.; Grimm, U., Spectrum of a Rudin-Shapiro-like sequence, Adv. Appl. Math., 87, 16-23 (2017) · Zbl 1375.37035 · doi:10.1016/j.aam.2016.12.003
[15] Chan, L., Grimm, U.: Substitution-based structures with absolutely continuous spectrum. J. Phys. Conf. Ser. 809(1) (2017) · Zbl 1393.37019
[16] Clark, A., Sadun, L., Short, I.: When size matters: subshifts and their related tiling spaces. Indag. Math. (N.S.) 29(4), 1072-1086 (2018) · Zbl 1393.37019
[17] Cobo, M.; Gutiérrez-Romo, R.; Maass, A., Characterization of minimal sequences associated with self-similar interval exchange maps, Nonlinearity, 31, 4, 1121-1154 (2018) · Zbl 1387.37016 · doi:10.1088/1361-6544/aa9a87
[18] Danilenko, A.; Lemańczyk, M., Spectral multiplicities for ergodic flows, Discrete Contin. Dyn. Syst., 33, 9, 4271-4289 (2013) · Zbl 1306.37006 · doi:10.3934/dcds.2013.33.4271
[19] Dekking, FM; Keane, M., Mixing properties of substitutions, Zeit. Wahr. Verw. Gebiete, 42, 23-33 (1978) · Zbl 0352.28007 · doi:10.1007/BF00534205
[20] Dworkin, S., Spectral theory and x-ray diffraction, J. Math. Phys., 34, 7, 2965-2967 (1993) · Zbl 0808.47052 · doi:10.1063/1.530108
[21] Everest, G.; Ward, T., Heights of Polynomials and Entropy in Algebraic Dynamics (1999), London: Springer, London · Zbl 0919.11064 · doi:10.1007/978-1-4471-3898-3
[22] Fogg, N.P.: Substitutions in dynamics, arithmetics and combinatorics. In: Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A. (eds.) Lecture Notes in Mathematics, vol. 1794. Springer, Berlin (2002) · Zbl 1014.11015
[23] Frank, NP, Substitution sequences in \({{\mathbb{Z}}}^d\) with a non-simple Lebesgue component in the spectrum, Ergod. Theory Dyn. Syst., 23, 519-532 (2003) · Zbl 1031.11009 · doi:10.1017/S0143385702001256
[24] Furstenberg, H.; Kesten, H., Products of random matrices, Ann. Math. Stat., 31, 2, 457-469 (1960) · Zbl 0137.35501 · doi:10.1214/aoms/1177705909
[25] Goldberg, R., Restrictions of Fourier transforms and extension of Fourier sequences, J. Approx. Theory, 3, 149-155 (1970) · Zbl 0191.40904 · doi:10.1016/0021-9045(70)90023-7
[26] Host, B., Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergod. Theory Dyn. Syst., 6, 529-540 (1986) · Zbl 0625.28011 · doi:10.1017/S0143385700003679
[27] Host, B., Some results on uniform distribution in the multidimensional torus, Ergod. Theory Dyn. Syst., 20, 439-452 (2000) · Zbl 1047.37003 · doi:10.1017/S0143385700000201
[28] Kingman, JFC, The ergodic theory of subadditive stochastic processes, J. R. Stat. Soc. Ser. B, 30, 499-510 (1968) · Zbl 0182.22802
[29] Lanneau, E., Infinite sequence of fixed point free pseudo-Anosov homeomorphisms on a family of genus two surfaces, Contemp. Math., 532, 231-242 (2010) · Zbl 1217.37040 · doi:10.1090/conm/532/10493
[30] Mahler, K., On some inequalities for polynomials in several variables, J. Lond. Math. Soc., 37, 341-344 (1962) · Zbl 0105.06301 · doi:10.1112/jlms/s1-37.1.341
[31] Matheus, C.; Möller, M.; Yoccoz, J-C, A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces, Invent. Math., 202, 1, 333-425 (2015) · Zbl 1364.37081 · doi:10.1007/s00222-014-0565-5
[32] Meiri, D., Entropy and uniform distribution of orbits in \({{\mathbb{T}}}^d\), Isr. J. Math., 105, 155-183 (1998) · Zbl 0908.11032 · doi:10.1007/BF02780327
[33] Queffelec, M.: Substitution Dynamical Systems-Spectral Analysis, 2nd edn. Lecture Notes in Mathematics, vol. 1294. Springer, Berlin (2010) · Zbl 1225.11001
[34] Rauzy, G., Échanges d’intervalles et transformations induites, Acta Arith., 34, 4, 315-328 (1979) · Zbl 0414.28018 · doi:10.4064/aa-34-4-315-328
[35] Salem, R., Algebraic Numbers and Fourier analysis (1963), Lexington: D. C. Heath and Co., Lexington · Zbl 0126.07802
[36] Solomyak, B., Dynamics of self-similar tilings, Ergod. Theory Dyn. Syst., 17, 3, 695-738 (1997) · Zbl 0884.58062 · doi:10.1017/S0143385797084988
[37] Solomyak, B.: Dynamics of self-similar tilings. Ergod. Theory Dyn. Syst. 19, 1685 (1999)(erratum) · Zbl 0884.58062
[38] Steele, JM, Kingman’s subadditive ergodic theorem, Ann. Inst. H. Poincaré Probab. Stat., 25, 1, 93-98 (1989) · Zbl 0669.60039
[39] Veech, WA, Gauss measures for transformations on the space of interval exchange maps, Ann. Math. (2), 115, 1, 201-242 (1982) · Zbl 0486.28014 · doi:10.2307/1971391
[40] Viana, M.: Lectures on Interval Exchange Transformations and Teichmüller Flows. Preprint IMPA (2008)
[41] Yoccoz, J.-C.: Interval exchange maps and translation surfaces. In: Homogeneous Flows, Moduli Spaces and Arithmetic. Clay Mathematics Proceedings, vol. 10, pp. 1-69. American Mathematical Society, Providence (2010) · Zbl 1248.37038
[42] Zorich, A.: Flat surfaces. In: Frontiers in Number Theory, Physics, and Geometry. I, pp. 437-583. Springer, Berlin (2006) · Zbl 1129.32012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.