×

Review on nature-inspired algorithms. (English) Zbl 1476.90357

Summary: Optimization and its related solving methods are becoming increasingly important in most academic and industrial fields. The goal of the optimization process is to make a system or a design as effective and functional as possible. This is achieved by optimizing a set of objectives while meeting the system requirements. Optimization techniques are classified into exact and approximate algorithms. Nature-inspired (NI) methods, a sub-class of approximate techniques, are widely recognized for providing efficient approaches for solving a wide variety of real-world optimization problems. In this paper, we discuss many scenarios where we can or cannot use different NI methods in tackling real-world optimization problems. We also enrich our survey with many studies for the reader to prove the efficiency and efficacy of using NI methods to tackle many real-world applications. Therefore, NI methods should be considered as alternative reliable approaches in the absence of exact methods to provide satisfactory solutions.

MSC:

90C59 Approximation methods and heuristics in mathematical programming

Software:

KEEL
Full Text: DOI

References:

[1] Rao SS (2009) Engineering optimization: theory and practice. John Wiley & Sons
[2] Boussaïd, I.; Lepagnot, J.; Siarry, P., A survey on optimization metaheuristics, Inf Sci, 237, 82-117 (2013) · Zbl 1321.90156 · doi:10.1016/j.ins.2013.02.041
[3] Fogel, LJ; Owens, AJ; Walsh, MJ, Artificial intelligence through simulated evolution (1966), Chichester, WS, UK: Wiley, Chichester, WS, UK · Zbl 0148.40701
[4] Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence · Zbl 0317.68006
[5] Kirkpatrick, S.; Gelatt, CD; Vecchi, MP, Optimization by simulated annealing, Science, 220, 4598, 671-680 (1983) · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[6] Kennedy J, Eberhart R (1995) Particle swarm optimization. In Proc IEEE Intl Con on Neural Networks (Perth, Australia). pp. 1942-1948
[7] Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 22(3):52-67
[8] Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation. pp. 4661-4667
[9] Cheng, R.; Jin, Y., A competitive swarm optimizer for large scale optimization, IEEE Transactions on Cybernetics, 45, 2, 191-204 (2014) · doi:10.1109/TCYB.2014.2322602
[10] Talbi EG (2009) Metaheuristics: from design to implementation, volume 74. John Wiley & Sons · Zbl 1190.90293
[11] Archetti, F.; Schoen, F., A survey on the global optimization problem: general theory and computational approaches, Ann Oper Res, 1, 2, 87-110 (1984) · Zbl 0671.90057 · doi:10.1007/BF01876141
[12] Fister Jr I, Yang XS, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186 · Zbl 1301.65045
[13] Talbi EG (2020) Machine learning into metaheuristics: a survey and taxonomy of data-driven metaheuristics
[14] Dechter R. (2003) Constraint processing. Morgan Kaufmann · Zbl 1057.68114
[15] Fomin FV, Kratsch D (2010) Exact exponential algorithms. Springer Science & Business Media · Zbl 1370.68002
[16] Applegate D, Bixby R, Cook W, Chvátal V (1998) On the solution of traveling salesman problems. CRPC-TR98744 · Zbl 0904.90165
[17] Cheeseman PC, Kanefsky B, Taylor WM (1991) Where the really hard problems are. In IJCAI (91)331-337 · Zbl 0747.68064
[18] Karaboga, D.; Gorkemli, B.; Ozturk, C.; Karaboga, N., A comprehensive survey: artificial bee colony (abc) algorithm and applications, Artif Intell Rev, 42, 1, 21-57 (2014) · doi:10.1007/s10462-012-9328-0
[19] Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng · Zbl 1394.90588
[20] Yang XS (2010) Engineering optimization: an introduction with metaheuristic applications. John Wiley & Sons
[21] Xu L, Hutter F, Hoos H, Leyton-Brown K (2012) Evaluating component solver contributions to portfolio-based algorithm selectors. In International Conference on Theory and Applications of Satisfiability Testing. Springer, pp. 228-241
[22] Jin, Y., A comprehensive survey of fitness approximation in evolutionary computation, Soft Comput, 9, 1, 3-12 (2005) · Zbl 1059.68089 · doi:10.1007/s00500-003-0328-5
[23] Zanakis SH, Evans JR (1981) Heuristic “optimization”: Why, when, and how to use it. Interfaces 11(5):84-91
[24] Crainic TG, Toulouse M (2003) Parallel strategies for meta-heuristics. In Handbook of metaheuristics. Springer, pp. 475-513 · Zbl 1053.90138
[25] Szu HH, Hartley RL (1987) Nonconvex optimization by fast simulated annealing. Proceedings of the IEEE 75(11):1538-1540
[26] Tsallis C, Stariolo DA (1996) Generalized simulated annealing. Physica A 233(1-2):395-406
[27] Creutz, M., Microcanonical monte carlo simulation, Phys Rev Lett, 50, 1411-1414 (1983) · doi:10.1103/PhysRevLett.50.1411
[28] Dueck, G.; Scheuer, T., Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing, J Comput Phys, 90, 1, 161-175 (1990) · Zbl 0707.65039 · doi:10.1016/0021-9991(90)90201-B
[29] El Yafrani M, Ahiod B (2016) Population-based vs. single-solution heuristics for the travelling thief problem. In Proceedings of the Genetic and Evolutionary Computation Conference 2016. ACM, pp. 317-324
[30] Van Laarhoven PJ, Aarts EH, Lenstra JK (1992) Job shop scheduling by simulated annealing. Oper Res 40(1):113-125 · Zbl 0751.90039
[31] Delahaye D, Chaimatanan S, Mongeau M (2019) Simulated annealing: From basics to applications. In Handbook of Metaheuristics. Springer, pp. 1-35
[32] Beheshti, Z.; Shamsuddin, SM, A review of population-based meta-heuristic algorithms, Int J Adv Soft Comput Appl, 5, 1, 1-35 (2013)
[33] Gogna, A.; Tayal, A., Metaheuristics: review and application, J Exp Theor Artif Intell, 25, 4, 503-526 (2013) · doi:10.1080/0952813X.2013.782347
[34] Stuckman B, Evans G, Mollaghasemi M (1991) Comparison of global search methods for design optimization using simulation. In 1991 Winter Simulation Conference Proceedings. IEEE, pp. 937-944
[35] Atkinson, AC, A segmented algorithm for simulated annealing, Stat Comput, 2, 4, 221-230 (1992) · doi:10.1007/BF01889682
[36] Stokes Z, Mandal A, Wong WK (2020) Using differential evolution to design optimal experiments. Chemom Intell Lab Syst 199:103955
[37] García-Ródenas R, García-García JC, López-Fidalgo J, Martín-Baos JA, Wong WK (2020) A comparison of general-purpose optimization algorithms for finding optimal approximate experimental designs. Comput Stat Data Anal 144:106844 · Zbl 1504.62120
[38] Shi Y, Zhang Z, Wong WK (2019) Particle swarm based algorithms for finding locally and bayesian d-optimal designs. Journal of Statistical Distributions and Applications 6(1):3 · Zbl 1478.62221
[39] Mahmudy WF (2016) Improved simulated annealing for optimization of vehicle routing problem with time windows (vrptw). Kursor 7(3)
[40] Kose A, Sonmez BA, Balaban M (2017) Simulated annealing algorithm for graph coloring. arXiv preprint arXiv:1712.00709
[41] Emden-Weinert, T.; Proksch, M., Best practice simulated annealing for the airline crew scheduling problem, J Heuristics, 5, 4, 419-436 (1999) · Zbl 1071.90532 · doi:10.1023/A:1009632422509
[42] Hanafi, R.; Kozan, E., A hybrid constructive heuristic and simulated annealing for railway crew scheduling, Comput Ind Eng, 70, 11-19 (2014) · doi:10.1016/j.cie.2014.01.002
[43] Bayram, H.; Şahin, R., A new simulated annealing approach for travelling salesman problem, Mathematical and Computational Applications, 18, 3, 313-322 (2013) · Zbl 1390.90459 · doi:10.3390/mca18030313
[44] Siarry, P.; Berthiau, G.; Durdin, F.; Haussy, J., Enhanced simulated annealing for globally minimizing functions of many-continuous variables, ACM Trans Math Softw (TOMS), 23, 2, 209-228 (1997) · Zbl 0887.65067 · doi:10.1145/264029.264043
[45] Connolly DT (1990) An improved annealing scheme for the qap. Eur J Oper Res 46(1):93-100 · Zbl 0715.90079
[46] Misevičius, A., A modified simulated annealing algorithm for the quadratic assignment problem, Informatica, 14, 4, 497-514 (2003) · Zbl 1176.90665 · doi:10.15388/Informatica.2003.037
[47] Freitas AA (2003) A survey of evolutionary algorithms for data mining and knowledge discovery. In Advances in Evolutionary Computing. Springer, pp 819-845
[48] Deb, K., An introduction to genetic algorithms, Sadhana, 24, 4-5, 293-315 (1999) · Zbl 1075.90565 · doi:10.1007/BF02823145
[49] Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning, addisson-wesley. Reading, MA · Zbl 0721.68056
[50] Coello, CC; Pulido, GT, Multiobjective structural optimization using a microgenetic algorithm, Struct Multidiscip Optim, 30, 5, 388-403 (2005) · doi:10.1007/s00158-005-0527-z
[51] Krishnakumar K (1990) Micro-genetic algorithms for stationary and non-stationary function optimization. In Intelligent Control and Adaptive Systems. International Society for Optics and Photonics 1196:289-297
[52] Syswerda G (1989) Uniform crossover in genetic algorithms. In Proceedings of the third international conference on Genetic algorithms. Morgan Kaufmann Publishers, pp 2-9
[53] Ono I, Kita H, Kobayashi S (2003) A real-coded genetic algorithm using the unimodal normal distribution crossover. In Advances in Evolutionary Computing. Springer, pp 213-237
[54] Ono I, Kita H, Kobayashi S (1999) A robust real-coded genetic algorithm using unimodal normal distribution crossover augmented by uniform crossover: effects of self-adaptation of crossover probabilities. In Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation-Volume 1. Morgan Kaufmann Publishers Inc., pp 496-503
[55] Deb, K.; Agrawal, RB, Simulated binary crossover for continuous search space, Complex Systems, 9, 2, 115-148 (1995) · Zbl 0843.68023
[56] Sánchez AM, Lozano M, Villar P, Herrera F (2009) Hybrid crossover operators with multiple descendents for real-coded genetic algorithms: Combining neighborhood-based crossover operators. Int J Intell Syst 24(5):540-567 · Zbl 1178.68651
[57] Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms and interval-schemata. In Foundations of genetic algorithms. Elsevier, vol 2, pp 187-202
[58] Takahashi M, Kita H (2001) A crossover operator using independent component analysis for real-coded genetic algorithms. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), volume 1, pages 643-649
[59] Munteanu C, Lazarescu V (1999) Improving mutation capabilities in a real-coded genetic algorithm. In Workshops on Applications of Evolutionary Computation. Springer, pp 138-149
[60] Korejo I, Yang S, Li C (2010) A directed mutation operator for real coded genetic algorithms. In European Conference on the Applications of Evolutionary Computation. Springer, pp 491-500
[61] Srinivas, N.; Deb, K., Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evol Comput, 2, 3, 221-248 (1994) · doi:10.1162/evco.1994.2.3.221
[62] Rechenberg I (1965) Cybernetic solution path of an experimental problem. In Royal Aircraft Establishment Library Translation
[63] Schwefel, HP, Numerical Optimization of Computer Models (1981), New York, NY, USA: John Wiley & Sons Inc, New York, NY, USA · Zbl 0451.65043
[64] Fogel DB (1991) System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling. Ginn Press
[65] Fogel DB (1992) Evolving artificial intelligence. Doctoral Dissertation
[66] Fogel DB (1993) Applying evolutionary programming to selected traveling salesman problems. Cybern Syst 24(1):27-36
[67] Fogel DB (2006) Evolutionary computation: toward a new philosophy of machine intelligence. John Wiley & Sons, vol 1 · Zbl 0926.68052
[68] Yao, X.; Liu, Y., Fast evolutionary programming, Evolutionary Programming, 3, 451-460 (1996)
[69] Yao, X.; Liu, Y.; Lin, G., Evolutionary programming made faster, IEEE Trans Evol Comput, 3, 2, 82-102 (1999) · doi:10.1109/4235.771163
[70] Lee, CY; Yao, X., Evolutionary programming using mutations based on the lévy probability distribution, IEEE Trans Evol Comput, 8, 1, 1-13 (2004) · doi:10.1109/TEVC.2003.816583
[71] Fogel DB (1997) The advantages of evolutionary computation. In BCEC p 1-11
[72] Wieland AP (1991) Evolving controls for unstable systems. In Connectionist Models. Elsevier, pp 91-102
[73] Schwefel, HP, Advantages (and disadvantages) of evolutionary computation over other approaches, Evol Comput, 1, 20-22 (2000)
[74] Dimopoulos, C.; Zalzala, AMS, Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons, IEEE Trans Evol Comput, 4, 2, 93-113 (2000) · doi:10.1109/4235.850651
[75] Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms compared to other techniques for pipe optimization. J Water Resour Plan Manag 120(4):423-443
[76] Chu PC, Beasley JE (1997) A genetic algorithm for the generalised assignment problem. Comput Oper Res 24(1):17-23 · Zbl 0881.90070
[77] Alba E, Troya JM et al (1999) A survey of parallel distributed genetic algorithms. Complexity 4(4):31-52
[78] Reddy GT, Reddy MP, Lakshmanna K, Rajput DS, Kaluri R, Srivastava G (2020) Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis. Evol Intell 13(2):185-196
[79] Zhou, Y.; Wang, Y.; Wang, K.; Kang, L.; Peng, F.; Wang, L.; Pang, J., Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors, Appl Energy, 260, 114169 (2020) · doi:10.1016/j.apenergy.2019.114169
[80] Back T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press · Zbl 0877.68060
[81] Moslemipour G, Lee TS, Rilling D (2012) A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. Int J Adv Manuf Technol 60(1-4):11-27
[82] Leung, Y.; Gao, Y.; Zong-Ben, X., Degree of population diversity-a perspective on premature convergence in genetic algorithms and its markov chain analysis, IEEE Trans Neural Netw, 8, 5, 1165-1176 (1997) · doi:10.1109/72.623217
[83] Hrstka, O.; Kučerová, A., Improvements of real coded genetic algorithms based on differential operators preventing premature convergence, Adv Eng Softw, 35, 3-4, 237-246 (2004) · doi:10.1016/S0965-9978(03)00113-3
[84] Fogel DB (1995) A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems. Simulation 64(6):397-404
[85] Swayamsiddha S, Thethi HP. Nonlinear system identification using evolutionary computing based training schemes. Int J Comput Appl 975:8887
[86] Storn, R.; Price, K., Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J Glob Optim, 11, 4, 341-359 (1997) · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[87] Li J, Aickelin U (2003) A bayesian optimization algorithm for the nurse scheduling problem. In The 2003 Congress on Evolutionary Computation, 2003. CEC’03., vol 3, pp 2149-2156
[88] Larranaga P, Kuijpers CMH, Murga RH, Inza I, Dizdarevic S (1999) Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artif Intell Rev 13(2):129-170
[89] Hussain A, Muhammad YS, Sajid MN, Hussain I, Shoukry AM, Gani S (2017) Genetic algorithm for traveling salesman problem with modified cycle crossover operator. Comput Intell Neurosci
[90] Davis L (1985) Job shop scheduling with genetic algorithms. In Proceedings of an international conference on genetic algorithms and their applications, vol 140 · Zbl 0681.68043
[91] Chan H, Mazumder P, Shahookar K (1991) Macro-cell and module placement by genetic adaptive search with bitmap-represented chromosome. VLSI, 12(1)
[92] Boudjelaba, K.; Ros, F.; Chikouche, D., An efficient hybrid genetic algorithm to design finite impulse response filters, Expert Systems with Applications, 41, 13, 5917-5937 (2014) · doi:10.1016/j.eswa.2014.03.034
[93] Karaboga, N.; Cetinkaya, B., Design of digital fir filters using differential evolution algorithm, Circuits Systems Signal Process, 25, 5, 649-660 (2006) · Zbl 1130.94308 · doi:10.1007/s00034-005-0721-7
[94] Karaboga, N., Digital iir filter design using differential evolution algorithm, EURASIP Journal on Applied Signal Processing, 1269-1276, 2005 (2005) · Zbl 1109.94316
[95] Storn S (1996) Differential evolution design of an iir-filter. In Proceedings of IEEE international conference on evolutionary computation. IEEE, pp 268-273
[96] Dasgupta D, Michalewicz Z (2013) Evolutionary algorithms in engineering applications. Springer Science & Business Media · Zbl 0879.68043
[97] Man, KF; Tang, KS; Kwong, Sam, Genetic algorithms: concepts and applications [in engineering design], IEEE Trans Ind Electron, 43, 5, 519-534 (1996) · doi:10.1109/41.538609
[98] Bhoskar MT, Kulkarni OK, Kulkarni NK, Patekar SL, Kakandikar GM, Nandedkar VM (2015) Genetic algorithm and its applications to mechanical engineering: A review. Materials Today: Proceedings 2(4-5):2624-2630
[99] Hatanaka, T.; Uosaki, K.; Yamada, Y., Evolutionary approach to system identification, IFAC Proceedings Volumes, 30, 11, 1327-1332 (1997) · doi:10.1016/S1474-6670(17)43026-6
[100] Fahmi M, Samad A (2014) Evolutionary computation in system identification: Review and recommendations. Int J Autom Control pp 208-216
[101] Lewin DR (2005) Evolutionary algorithms in control system engineering. IFAC Proceedings Volumes 38(1):45-50
[102] Fleming PJ, Purshouse RC (2002) Evolutionary algorithms in control systems engineering: a survey. Control Eng Pract 10(11):1223-1241
[103] Alcalá-Fdez J, Sanchez L, Garcia S, del Jesus MJ, Ventura S, Garrell JM, Otero J, Romero C, Bacardit J, Rivas VM et al (2009) Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 13(3):307-318
[104] Bounsaythip C, Alander JT (1997) Genetic algorithms in image processing-a review. In Proceedings of the Third Nordic Workshop on Genetic Algorithms and their Applications (3NWGA) pp 173-192
[105] Paulinas M, Ušinskas A (2007) A survey of genetic algorithms applications for image enhancement and segmentation. Inf Tech Control 36(3)
[106] Omran MG, Engelbrecht AP, Salman A (2005) Differential evolution methods for unsupervised image classification. In 2005 IEEE Congress on Evolutionary Computation. IEEE 2:966-973
[107] Bonabeau E, Marco DD, Dorigo M, Theraulaz G et al (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, vol 1 · Zbl 1003.68123
[108] Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on. IEEE pp 39-43
[109] Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In Evolutionary computation, 1999. CEC 99. Proceedings of the 1999 congress on. IEEE 3:1945-1950
[110] Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on. IEEE pp 69-73
[111] Zheng YL, Ma LH, Zhang LY, Qian JX (2003) Empirical study of particle swarm optimizer with an increasing inertia weight. In Evolutionary Computation, 2003. CEC’03. The 2003 Congress on. IEEE 1:221-226
[112] Clerc, M.; Kennedy, J., The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans Evol Comput, 6, 1, 58-73 (2002) · doi:10.1109/4235.985692
[113] Mendes, R.; Kennedy, J.; Neves, J., The fully informed particle swarm: simpler, maybe better, IEEE Trans Evol Comput, 8, 3, 204-210 (2004) · doi:10.1109/TEVC.2004.826074
[114] Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240-255
[115] Mohapatra P, Das KN, Roy S (2017) A modified competitive swarm optimizer for large scale optimization problems. Appl Soft Comput 59:340-362
[116] Mohapatra P, Das KN, Roy S (2019) Inherited competitive swarm optimizer for large-scale optimization problems. In Harmony Search and Nature Inspired Optimization Algorithms. Springer, pp 85-95
[117] Duan, H.; Huang, L., Imperialist competitive algorithm optimized artificial neural networks for ucav global path planning, Neurocomputing, 125, 166-171 (2014) · doi:10.1016/j.neucom.2012.09.039
[118] Ahmed, H.; Glasgow, J., Swarm intelligence: concepts, models and applications (2012), School Of Computing: Queens University Technical Report, School Of Computing
[119] Olariu S, Zomaya AY (2005) Handbook of bioinspired algorithms and applications. Chapman and Hall/CRC
[120] Elbeltagi, E.; Hegazy, T.; Grierson, D., Comparison among five evolutionary-based optimization algorithms, Adv Eng Inform, 19, 1, 43-53 (2005) · doi:10.1016/j.aei.2005.01.004
[121] Hassan R, Cohanim B, De Weck O, Venter G (2005) A comparison of particle swarm optimization and the genetic algorithm. In 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference p 1897
[122] Rahmat-Samii Y (2003) Genetic algorithm (ga) and particle swarm optimization (pso) in engineering electromagnetics. In 17th International Conference on Applied Electromagnetics and Communications. ICECom IEEE, pp 1-5
[123] Diaz, L.; Milligan, TA, Antenna Engineering Using Physical Optics: Practical CAD Techniques and Software (1996), Norwood, MA, USA: Artech House Inc, Norwood, MA, USA
[124] Afandie WN, Rahman TK, Zakaria Z (2016) Comparative analysis of bacterial foraging optimization algorithm and evolutionary programming for load shedding in power system. Int J Simul Syst Sci Technol 17(41)
[125] Alsariera YA, Alamri HS, Nasser AM, Majid MA, Zamli KZ (2014) Comparative performance analysis of bat algorithm and bacterial foraging optimization algorithm using standard benchmark functions. In 2014 8th. Malaysian Software Engineering Conference (MySEC). IEEE, pp 295-300
[126] Kamalanand K, Jawahar PM (2016) Comparison of particle swarm and bacterial foraging optimization algorithms for therapy planning in hiv/aids patients. Int J Biomath 9(02):1650024 · Zbl 1339.92031
[127] Ji X, Gao Q, Yin F, Guo H (2016) An efficient imperialist competitive algorithm for solving the qfd decision problem. Math Probl Eng · Zbl 1400.90310
[128] Huang, C.; Li, Y.; Yao, X., A survey of automatic parameter tuning methods for metaheuristics, IEEE Trans Evol Comput, 24, 2, 201-216 (2019) · doi:10.1109/TEVC.2019.2921598
[129] Birattari M, Stützle T, Paquete L, Varrentrapp K et al (2002) A racing algorithm for configuring metaheuristics. In Gecco, vol 2
[130] Yuan B, Gallagher M (2004) Statistical racing techniques for improved empirical evaluation of evolutionary algorithms. In International Conference on Parallel Problem Solving from Nature. Springer, pp 172-181
[131] Chen L, Xu X, Chen YX (2004) An adaptive ant colony clustering algorithm. In Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), vol 3, pp 1387-1392
[132] Chen H, Zhu Y, Hu K (2011) Adaptive bacterial foraging optimization. In Abstract and Applied Analysis. Hindawi, vol 2011 · Zbl 1220.90167
[133] Dasgupta, S.; Das, S.; Abraham, A.; Biswas, A., Adaptive computational chemotaxis in bacterial foraging optimization: an analysis, IEEE Trans Evol Comput, 13, 4, 919-941 (2009) · doi:10.1109/TEVC.2009.2021982
[134] Shi Y, Eberhart RC (2001) Fuzzy adaptive particle swarm optimization. In Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546), vol 1, pp 101-106
[135] Bäck, T., Introduction to the special issue: Self-adaptation, Evol Comput, 9, 2, 3-4 (2001) · doi:10.1162/106365601750190361
[136] Clerc M (2006) Stagnation analysis in particle swarm optimisation or what happens when nothing happens. Tech Rep
[137] Bouhouch A, Loqman C, Bennis H, El Qadi A (2019) A comparative study of chn-mnc, ga and pso for solving constraints satisfaction problems. In Third International Conference on Computing and Wireless Communication Systems, ICCWCS 2019. European Alliance for Innovation (EAI)
[138] Abdi Y, Lak M, Seyfari Y (2017) Gica: Imperialist competitive algorithm with globalization mechanism for optimization problems. Turk J Electr Eng Comput Sci 25(1):209-221
[139] Zhou, W.; Yan, J.; Li, Y.; Xia, C.; Zheng, J., Imperialist competitive algorithm for assembly sequence planning, Int J Adv Manuf Technol, 67, 9-12, 2207-2216 (2013) · doi:10.1007/s00170-012-4641-y
[140] Vijay, R., Intelligent bacterial foraging optimization technique to economic load dispatch problem, International Journal of Soft Computing and Engineering (IJSCE), 2, 2, 2231-2307 (2012)
[141] Sharvani GS, Ananth AG, Rangaswamy TM (2012) Analysis of different pheromone decay techniques for aco based routing in ad hoc wireless networks. Int J Comput Appl 56(2)
[142] Jagadeesh S, Sugumar R (2017) A comparative study on artificial bee colony with modified abc algorithm. European Journal of Applied Sciences 9(5):243-248
[143] Zhou, Z.; Peng, Z.; Cui, JH; Shi, Z., Efficient multipath communication for time-critical applications in underwater acoustic sensor networks, IEEE/ACM Trans Networking, 19, 1, 28-41 (2010) · doi:10.1109/TNET.2010.2055886
[144] Pal, NS; Sharma, S., Robot path planning using swarm intelligence: A survey, Int J Comput Appl, 83, 12, 5-12 (2013)
[145] Fornarelli G (2012) Swarm intelligence for electric and electronic engineering. IGI Global
[146] Ming L, Hai H, Aimin Z, Yingde S, Zhao L, Xingguo Z (2012) Modeling of mechanical properties of as-cast mg-li-al alloys based on pso-bp algorithm. China Foundry 9(2)
[147] Mohan SC, Maiti DK, Maity D (2013) Structural damage assessment using frf employing particle swarm optimization. Appl Math Comput 219(20):10387-10400 · Zbl 1293.74365
[148] Lu P, Chen S, Zheng Y (2012) Artificial intelligence in civil engineering. Math Probl Eng
[149] Omran MGH et al (2004) Particle swarm optimization methods for pattern recognition and image processing. PhD thesis, Citeseer
[150] Poli, R., An analysis of publications on particle swarm optimization applications (2007), Essex, UK: Department of Computer Science, University of Essex, Essex, UK
[151] Saraswathi, S.; Sundaram, S.; Sundararajan, N.; Zimmermann, M.; Nilsen-Hamilton, M., Icga-pso-elm approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented, IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 8, 2, 452-463 (2011) · doi:10.1109/TCBB.2010.13
[152] Xu R, Cai X, Wunsch DC (2006) Gene expression data for dlbcl cancer survival prediction with a combination of machine learning technologies. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference pp 894-897
[153] Mansour, N.; Kanj, F.; Khachfe, H., Particle swarm optimization approach for protein structure prediction in the 3d hp model, Interdisciplinary Sciences: Computational Life Sciences, 4, 3, 190-200 (2012)
[154] Karabulut, M.; Ibrikci, T., A bayesian scoring scheme based particle swarm optimization algorithm to identify transcription factor binding sites, Appl Soft Comput, 12, 9, 2846-2855 (2012) · doi:10.1016/j.asoc.2012.04.006
[155] Cedefto W, Agraflotis D (2005) Particle swarms for drug design. In 2005 IEEE Congress on Evolutionary Computation, vol 2, pp 1218-1225
[156] Yongqiang, H.; Wentao, L.; Xiaohui, L., Particle swarm optimization for antenna selection in mimo system, Wirel Pers Commun, 68, 3, 1013-1029 (2013) · doi:10.1007/s11277-011-0496-z
[157] Chiu, CC; Ho, MH; Liao, S., Pso and apso for optimizing coverage in indoor uwb communication system, Int J RF Microwave Comput Aided Eng, 23, 3, 300-308 (2013) · doi:10.1002/mmce.20674
[158] Kim YG, Lee MJ (2014) Scheduling multi-channel and multi-timeslot in time constrained wireless sensor networks via simulated annealing and particle swarm optimization. IEEE Commun Mag 52(1):122-129
[159] Das G, Pattnaik PK, Padhy SK (2014) Artificial neural network trained by particle swarm optimization for non-linear channel equalization. Expert Systems with Applications 41(7):3491-3496
[160] Goldansaz SM, Jolai F, Anaraki AHZ (2013) A hybrid imperialist competitive algorithm for minimizing makespan in a multi-processor open shop. Appl Math Model 37(23):9603-9616 · Zbl 1427.90143
[161] Lucas, C.; Nasiri-Gheidari, Z.; Tootoonchian, F., Application of an imperialist competitive algorithm to the design of a linear induction motor, Energy Convers Manag, 51, 7, 1407-1411 (2010) · doi:10.1016/j.enconman.2010.01.014
[162] Kaveh, A.; Talatahari, S., Optimum design of skeletal structures using imperialist competitive algorithm, Comput Struct, 88, 21-22, 1220-1229 (2010) · doi:10.1016/j.compstruc.2010.06.011
[163] Duan, H.; Chunfang, X.; Liu, S.; Shao, S., Template matching using chaotic imperialist competitive algorithm, Pattern Recogn Lett, 31, 13, 1868-1875 (2010) · doi:10.1016/j.patrec.2009.12.005
[164] Nazari-Shirkouhi S, Eivazy H, Ghodsi R, Rezaie K, Atashpaz-Gargari E (2010) Solving the integrated product mix-outsourcing problem using the imperialist competitive algorithm. Expert Systems with Applications 37(12):7615-7626
[165] Biabangard-Oskouyi, A.; Atashpaz-Gargari, E.; Soltani, N.; Lucas, C., Application of imperialist competitive algorithm for materials property characterization from sharp indentation test, International Journal of Engineering Simulation, 10, 1, 11-12 (2009)
[166] Rajabioun R, Hashemzadeh F, Atashpaz-Gargari E, Mesgari B, Rajaei Salmasi F (2008) Identification of a mimo evaporator and its decentralized pid controller tuning using colonial competitive algorithm. In be presented in IFAC World Congress
[167] Forouharfard S, Zandieh M (2010) An imperialist competitive algorithm to schedule of receiving and shipping trucks in cross-docking systems. Int J Adv Manuf Technol 51(9-12):1179-1193
[168] Alba E, Chicano JF (2006) Evolutionary algorithms in telecommunications. In MELECON 2006-2006 IEEE Mediterranean Electrotechnical Conference, pp 795-798
[169] Veeramachaneni K, Peram T, Mohan C, Osadciw LA (2003) Optimization using particle swarms with near neighbor interactions. In Genetic and Evolutionary Computation Conference. Springer, pp 110-121 · Zbl 1028.68918
[170] Chaimatanan, S.; Delahaye, D.; Mongeau, M., A hybrid metaheuristic optimization algorithm for strategic planning of 4d aircraft trajectories at the continental scale, IEEE Comput Intell Mag, 9, 4, 46-61 (2014) · doi:10.1109/MCI.2014.2350951
[171] Flores SD, Cegla BB, Cáceres DB (2003) Telecommunication network design with parallel multi-objective evolutionary algorithms. LANC 3:3-5
[172] Fogel DB (2000) Evolutionary computation: principles and practice for signal processing. SPIE Press, vol 43
[173] Fogel DB, Fogel LJ, Atmar JW (1991) Meta-evolutionary programming. In [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers. pp 540-545
[174] Higashi N, Iba H (2003) Particle swarm optimization with gaussian mutation. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706). IEEE, pp 72-79
[175] Ilonen, J.; Kamarainen, JK; Lampinen, J., Differential evolution training algorithm for feed-forward neural networks, Neural Process Lett, 17, 1, 93-105 (2003) · doi:10.1023/A:1022995128597
[176] Miller JF, Job D, Vassilev VK (2000) Principles in the evolutionary design of digital circuits-part i. Genet Program Evolvable Mach 1(1-2):7-35 · Zbl 1006.68633
[177] Wong DF, Leong HW, Liu HW (2012) Simulated annealing for VLSI design. Springer Science & Business Media, vol 42 · Zbl 0699.94016
[178] Yao, X., Evolving artificial neural networks, Proceedings of the IEEE, 87, 9, 1423-1447 (1999) · doi:10.1109/5.784219
[179] Yao, X.; Liu, Y., A new evolutionary system for evolving artificial neural networks, IEEE Trans Neural Netw, 8, 3, 694-713 (1997) · doi:10.1109/72.572107
[180] Zebulum RS, Pacheco MA, Be Vellasco MM (2018) Evolutionary electronics: automatic design of electronic circuits and systems by genetic algorithms. CRC Press
[181] Barr RS, Golden BL, Kelly JP, Resende MGC, Stewart WR (1995) Designing and reporting on computational experiments with heuristic methods. J Heuristics 1(1):9-32 · Zbl 0853.68154
[182] Hooker JN (1995) Testing heuristics: We have it all wrong. J Heuristics 1(1):33-42 · Zbl 0853.68155
[183] Tufte ER (2001) The visual display of quantitative information. Graphics press Cheshire, CT, vol 2
[184] Chiarandini M, Paquete L, Preuss M, Ridge E (2007) Experiments on metaheuristics: Methodological overview and open issues. Tech Rep DMF-2007-03-003
[185] Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406). IEEE, vol 3, pp 1951-1957
[186] Birattari M, Kacprzyk J (2009) Tuning metaheuristics: a machine learning perspective. Springer, vol 197 · Zbl 1183.68464
[187] Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: A survey. Appl Soft Comput 11(6):4135-4151 · Zbl 1205.90298
[188] Sörensen K (2015) Metaheuristics-the metaphor exposed. Int Trans Oper Res 22(1), 3-18 · Zbl 1309.90127
[189] Burke EK, Curtois T, Kendall G, Hyde M, Ochoa G, Vazquez-Rodriguez JA (2009) Towards the decathlon challenge of search heuristics. In Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers. pp 2205-2208
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.