×

A genetic algorithm based procedure for automatic crack profile identification. (English) Zbl 1189.74045

Summary: This paper presents a genetic algorithm based procedure for automatic identification of crack profiles. In the procedure geometric modeling technique is applied to incorporate crack(s) into the structure under evaluation and a geometric model is generated. The geometric model is then used to generate finite element mesh. In solving forward problems, finite element meshes are adapted based on error estimation to improve accuracy in computed structural responses. Numerical results show that error from solving forward problems can largely slow down GA convergence and significantly affect the accuracy of estimated crack parameters. Mesh adaptation can effectively reduce the error, thus speeding up the convergence and improving accuracy.

MSC:

74G75 Inverse problems in equilibrium solid mechanics
74R10 Brittle fracture
92D99 Genetics and population dynamics

Software:

GALib
Full Text: DOI

References:

[1] DOI: 10.1088/0266-5611/20/3/003 · Zbl 1086.35117 · doi:10.1088/0266-5611/20/3/003
[2] DOI: 10.1006/jsvi.2002.5116 · doi:10.1006/jsvi.2002.5116
[3] Balasubramaniam K., Composites Part B 29 pp 171– · doi:10.1016/S1359-8368(97)00007-3
[4] DOI: 10.1109/8.982464 · doi:10.1109/8.982464
[5] Corney J., 3D Modelling with ACIS (2002)
[6] Darwin C., The Origin of Species (1859)
[7] DOI: 10.1016/S0045-7949(97)00092-8 · Zbl 0924.70003 · doi:10.1016/S0045-7949(97)00092-8
[8] Goldberg D. E., Genetic Algorithms in Search and Optimization (1989) · Zbl 0721.68056
[9] DOI: 10.1016/S0045-7825(01)00203-1 · Zbl 1075.74647 · doi:10.1016/S0045-7825(01)00203-1
[10] Holland J. H., Adaptation in Natural and Artificial Systems (1975)
[11] DOI: 10.1243/PIME_PROC_1995_209_238_02 · doi:10.1243/PIME_PROC_1995_209_238_02
[12] DOI: 10.1016/S0955-7997(97)00012-X · doi:10.1016/S0955-7997(97)00012-X
[13] DOI: 10.1016/S0045-7825(01)00173-6 · Zbl 1014.74030 · doi:10.1016/S0045-7825(01)00173-6
[14] DOI: 10.1016/S0045-7825(01)00359-0 · Zbl 1052.74063 · doi:10.1016/S0045-7825(01)00359-0
[15] DOI: 10.1201/9780203494486 · Zbl 1067.74002 · doi:10.1201/9780203494486
[16] DOI: 10.1016/S0045-7825(02)00221-9 · Zbl 1131.74316 · doi:10.1016/S0045-7825(02)00221-9
[17] DOI: 10.1002/nme.615 · Zbl 1026.74081 · doi:10.1002/nme.615
[18] DOI: 10.1117/1.1566779 · doi:10.1117/1.1566779
[19] DOI: 10.1016/S0263-2241(98)00075-X · doi:10.1016/S0263-2241(98)00075-X
[20] DOI: 10.1088/0964-1726/11/6/311 · doi:10.1088/0964-1726/11/6/311
[21] DOI: 10.1007/BF00350265 · doi:10.1007/BF00350265
[22] Stavroulakis G. E., Inverse and Crack Identification Problems in Engineering Mechanics (2000)
[23] DOI: 10.1007/s003660200010 · doi:10.1007/s003660200010
[24] DOI: 10.1080/088395101750363966 · doi:10.1080/088395101750363966
[25] DOI: 10.1088/0964-1726/11/1/308 · doi:10.1088/0964-1726/11/1/308
[26] DOI: 10.1016/0963-8695(96)00013-8 · doi:10.1016/0963-8695(96)00013-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.