×

Whirling frequencies of thin spinning cylindrical shells surrounded by an elastic foundation. (English) Zbl 1401.74120

Summary: In this paper, the whirling frequencies of simply supported and clamped rotating cylindrical shells surrounded by an elastic foundation are investigated. The Love’s shell theory is used along with the Winkler foundation to obtain the governing equations of motion. An exact power series solution is obtained for arbitrary boundary conditions and the results are verified with the literature. Several case studies are performed, and the effect of spinning speed, foundation stiffness, and geometrical dimensions of the cylinder on the whirling frequencies are investigated.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Bryan G.H.: On the beats in the vibration of revolving cylinder or bell. Proc. Camb. Philos. Soc. 7(1), 101–111 (1890)
[2] Di Taranto R.A., Lessen M.: Coriolis acceleration effect on the vibration of a rotating thin-walled circular cylinder. J. Appl. Mech. 31(5), 700–701 (1964) · doi:10.1115/1.3629733
[3] Srinivasan A.V., Lauterbach G.F.: Traveling waves in rotating cylindrical shells. J. Eng. Ind. Trans. ASME 93(4), 1229–1232 (1971) · doi:10.1115/1.3428067
[4] Huang S.C., Soedel W.: Effects of coriolis acceleration on the forced vibration of rotating cylindrical shells. J. Appl. Mech. Trans. ASME 55(1), 231–233 (1988) · doi:10.1115/1.3173637
[5] Saito T., Endo M.: Vibration of finite length, rotating cylindrical shells. J. Sound Vib. 107(1), 17–28 (1986) · Zbl 1235.74111 · doi:10.1016/0022-460X(86)90279-8
[6] Xiang S., Li G., Zhang W., Yang M.: Natural frequencies of rotating functionally graded cylindrical shells. Appl. Math. Mech. 33, 345–356 (2012) · doi:10.1007/s10483-012-1554-6
[7] Zinberg, H., Symonds, M.F.: The development of advanced composite tail rotor driveshaft. In: 26th Annual National Forum of American Helicopter Society, pp. 1–14 (1970)
[8] Sivak V.F.: Experimental investigation of the sensitivity of a rotating shell to the position of its axis. J. Int. Appl. Mech. 41, 934–936 (2005) · Zbl 1089.74505 · doi:10.1007/s10778-005-0163-8
[9] Sivak V.V., Sivak V.F.: Experimental study of the influence of loading conditions on the stability of rotating cylindrical shells. J. Int. Appl. Mech. 44, 672–675 (2008) · Zbl 1177.74012 · doi:10.1007/s10778-008-0077-3
[10] dos Reis, Henrique, L.M., Goldman, Robert, B., Verstrate, Paul, H.: Thin-walled laminated composite cylindrical tubes: Part III– critical speed analysis. J. Compos. Technol. Res. 9(2), 58–62 (1987)
[11] Huang S.C., Hsu B.S.: Resonant phenomena of a rotating cylindrical shell subjected to a harmonic moving load. J. Sound Vib. 136(2), 215–228 (1990) · doi:10.1016/0022-460X(90)90852-Q
[12] Liu Y., Chu F.: Nonlinear vibrations of rotating thin circular cylindrical shell. Nonlinear Dyn. 67, 1467–1479 (2012) · Zbl 1316.74022 · doi:10.1007/s11071-011-0082-7
[13] Li H., Lam K.Y.: Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method. Int. J. Mech. Sci. 40(5), 443–459 (1998) · Zbl 0953.74013 · doi:10.1016/S0020-7403(97)00136-7
[14] Heydarpour Y., Malekzadeh P., Golbahar Haghighi M.R., Vaghefi M.: Thermoelastic analysis of rotating laminated functionally graded cylindrical shells using layerwise differential quadrature method. Acta Mech. 223, 81–93 (2012) · Zbl 1330.74120 · doi:10.1007/s00707-011-0551-6
[15] Guo D., Zheng Z., Chu F.: Vibrations analysis of spinning cylindrical shells by finite element method. Int. J. Solid Struct. 39, 725–739 (2002) · Zbl 0991.74512 · doi:10.1016/S0020-7683(01)00031-2
[16] Liew K.M., Ng T.Y., Zhao X., Reddy J.N.: Harmonic reproducing Kernel particle method for free vibration analysis of rotating cylindrical shells. Comput. Methods Appl. Mech. Eng. 191(37–38), 4141–4157 (2002) · Zbl 1083.74609 · doi:10.1016/S0045-7825(02)00358-4
[17] Ng T.Y., Koh R.E.S.: Effect of boundary conditions on the natural frequencies and critical speeds of rotating cylindrical shells. Int. J. Aerosp. Lightweight Struct. 1(1), 143–156 (2011) · doi:10.3850/S2010428611000080
[18] Shah A.G., Mahmood T., Naeem M.N., Iqbal Z., Arshad S.H.: Vibrations of functionally graded cylindrical shells based on elastic foundations. Acta Mech. 211, 293–307 (2010) · Zbl 1397.74094 · doi:10.1007/s00707-009-0225-9
[19] Shah A.G., Mahmood T., Naeem M.N., Arshad S.H.: Vibration characteristics of fluid-filled cylindrical shells based on elastic foundations. Acta Mech. 216, 17–28 (2011) · Zbl 1398.74152 · doi:10.1007/s00707-010-0346-1
[20] Sofiyev, A.H., Alizada, A.N., Akin, Ö., Valiyev, A., Avcar, M., Adiguzel, S.: On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundations. Acta Mech. 223, 189–204 (2012) · Zbl 1330.74125
[21] Suzuki S.: Dynamic behaviour of thin cylindrical shell rotating with high-speed. Ingenieur-Archiv 46, 75–84 (1977) · Zbl 0355.73070 · doi:10.1007/BF00538741
[22] Liessa A.W.: Vibration of Shells. NASA SP 288, Washington (1996)
[23] Markus, S.: The Mechanics of Vibrations of Cylindrical Shells, p. 17. Elsevier, New York (1988)
[24] Dym C.L.: Some new results for the vibrations of circular cylinders. J. Sound Vib. 29, 189 (1973) · Zbl 0264.73089 · doi:10.1016/S0022-460X(73)80134-8
[25] Chung H.: Free vibration analysis of circular cylindrical shells. J. Sound Vib. 74, 331–350 (1981) · Zbl 0457.73042 · doi:10.1016/0022-460X(81)90303-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.