×

Crack detection in a shaft by combination of wavelet-based elements and genetic algorithm. (English) Zbl 1169.74466

Summary: A new crack detection method is proposed for detecting crack location and depth in a shaft. Rotating Rayleigh-Euler and Rayleigh-Timoshenko beam elements of B-spline wavelet on the interval (BSWI) are constructed to discretize slender shaft and stiffness disc, respectively. According to linear fracture mechanics theory, the localized additional flexibility in crack vicinity can be represented by a lumped parameter element. The cracked shaft is modeled by wavelet-based elements to gain precise frequencies. The first three measured frequencies are used in crack detection process and the normalized crack location and depth are detected by means of genetic algorithm. To investigate the robustness and accuracy of the proposed method, some numerical examples and experimental cases of cracked shaft are conducted. It is found that the method is capable of detecting crack in a shaft.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74R10 Brittle fracture
74S30 Other numerical methods in solid mechanics (MSC2010)

Software:

GAToolBox
Full Text: DOI

References:

[1] Adams, R. D.; Cawley, P.; Pye, C. J.; Stone, B. J.: A vibration technique for non-destructively assessing the integrity of structures, Journal mechanical engineering science 20, No. 2, 93-100 (1978)
[2] Bertoluzza, S.; Naldi, G.; Ravel, J. C.: Wavelet methods for the numerical solution of boundary value problems on the interval, (1994) · Zbl 0845.65040
[3] Bukkapatnam, S. T. S.; Sadananda, K.: A genetic algorithm for unified approach-based predictive modeling of fatigue crack growth, International journal of fatigue 27, 1354-1359 (2005)
[4] Caddemi, S.; Morassi, A.: Crack detection in elastic beams by static measurements, International journal of solids and structures 44, 5301-5315 (2007) · Zbl 1124.74019 · doi:10.1016/j.ijsolstr.2006.12.033
[5] Chui, C. K.; Quak, E.: Wavelets on a bounded interval, Numerical methods of approximation theory 1, 53-57 (1992) · Zbl 0815.42016
[6] Dilena, M.; Morassi, A.: Identification of a crack in a rod based on changes in a pair of natural frequencies, Journal of sound and vibration 255, No. 5, 915-930 (2002)
[7] Dilena, M.; Morassi, A.: The use of antiresonances for crack detection in beams, Journal of sound and vibration 276, 195-214 (2004)
[8] Doebling, S. W.; Farrar, C. R.; Prime, M. B.: A summary review of vibration-based damage identification, The shock and vibration digest 30, No. 2, 91-105 (1998)
[9] Dong, G. M.; Chen, J.; Zou, J.: Parameter identification of a rotor with an open crack, European journal of mechanics A/solids 12, 325-333 (2004) · Zbl 1058.74553 · doi:10.1016/j.euromechsol.2003.11.003
[10] Dutta, A.; Talukdar, S.: Damage detection in bridges using accurate modal parameters, Finite elements in analysis and design 40, 287-304 (2004)
[11] Friswell, M. I.; Penny, J. E. T.: Crack modeling for structural health monitoring, Structural health monitoring 1, No. 2, 139-148 (2002)
[12] Goswami, J. C.; Chan, A. K.; Chui, C. K.: On solving first-kind integral equations using wavelets on a bounded interval, IEEE transactions on antennas and propagation 43, 614-622 (1995) · Zbl 0944.65537 · doi:10.1109/8.387178
[13] Gounaris, G.; Dimarogonas, A. D.: A finite element of a cracked prismatic beam for structural analysis, Computers and structures 28, 309-313 (1988) · Zbl 0631.73063 · doi:10.1016/0045-7949(88)90070-3
[14] Han, J. G.; Ren, W. X.; Sun, Z. S.: Wavelet packet based damage identification of beam structures, International journal of solids and structures 42, 6610-6627 (2005) · Zbl 1119.74453 · doi:10.1016/j.ijsolstr.2005.04.031
[15] He, Y. Y.; Guo, D.; Chu, F. L.: Using genetic algorithms and finite element methods to detect shaft crack for rotor-bearing system, Mathematics and computers in simulation 57, 95-108 (2001) · Zbl 1079.74638 · doi:10.1016/S0378-4754(01)00295-6
[16] Hong, J. C.; Kim, Y. Y.; Lee, H. C.; Lee, Y. W.: Damage detection using the Lipschitz exponent estimated by the wavelet transform applications to vibration modes of a beam, International journal of solids and structures 39, 1803-1816 (2002) · Zbl 1045.74025 · doi:10.1016/S0020-7683(01)00279-7
[17] Houck, C.R., Joines, J.A., Kay, M.G., 1995. A genetic algorithm for function optimisation: a matlab implementation. NCSU-IE Technical Report, No. 95 – 09.
[18] Kang, Y.; Lee, A. C.; Shih, Y. P.: A modified transfer matrix method for asymmetric rotor-bearing systems, ASME journal of vibration and acoustics 116, 309-317 (1994)
[19] Katz, R.; Lee, C. W.; Ulsoy, A. G.: The dynamic response of a rotating shaft subject to a moving load, Journal of sound and vibration 122, 131-148 (1988)
[20] Lele, S. P.; Maiti, S. K.: Modeling of transverse vibration of short beams for crack detection and measurement of crack extension, Journal of sound and vibration 257, No. 3, 559-583 (2002)
[21] Li, B.; Chen, X. F.; He, Z. J.: Detection of crack location and depth in structures using wavelet finite element methods, Journal of sound and vibration 285, No. 4 – 5, 767-782 (2005)
[22] Loutridis, S.; Douka, E.; Hadjileontiadis, L. J.: A two-dimensional wavelet transform for detection of cracks in plates, Engineering structures 27, 1327-1338 (2005)
[23] Montalv��o, D.; Maia, N. M. M.; Ribeiro, A. M. R.: A review of vibration-based structural health monitoring with special emphasis on composite materials, The shock and vibration digest 38, No. 4, 1-30 (2006)
[24] Morassi, A.: Identification of a crack in a rod based on changes in a pair of natural frequencies, Journal of sound and vibration 242, No. 4, 577-596 (2001)
[25] Morassi, A.: Damage detection and generalized Fourier coefficients, Journal of sound and vibration 302, 229-259 (2007) · Zbl 1242.74034
[26] Nandwana, B. P.; Maiti, S. K.: Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies, Journal of sound and vibration 203, No. 3, 435-446 (1997)
[27] Nelson, H. D.: The dynamics of rotor-bearing systems using finite element, ASME journal of mechanical design 102, 793-803 (1980)
[28] Papadopoulos, C. A.; Dimarogonas, A. D.: Coupled longitudinal and bending vibrations of a rotating shaft with an open crack, Journal of sound and vibration 117, No. 1, 81-93 (1987)
[29] Rizos, P. F.; Aspragathos, N.; Dimarogonas, A. D.: Identification of crack location and magnitude in a cantilever beam from the vibration modes, Journal of sound and vibration 138, No. 3, 381-388 (1990)
[30] Saavedra, P. N.; Cuitino, L. A.: Crack detection and vibration behavior of cracked beams, Computers and structures 79, 1451-1459 (2001)
[31] Sekhar, A. S.: Crack identification in a rotor system: a model-based approach, Journal of sound and vibration 270, 887-920 (2004)
[32] Staszecski, W. J.: Structural and mechanical damage detection using wavelets, The shock and vibration digest 30, No. 6, 457-472 (1998)
[33] Timoshenko, S.; Young, D. H.; Weaver, W.: Vibration problems in engineering, (1974)
[34] Xiang, J. W.; Chen, X. F.; He, Z. J.: Identification of crack in a beam based on finite element method of B-spline wavelet on the interval, Journal of sound and vibration 296, No. 4 – 5, 1046-1052 (2006)
[35] Xiang, J. W.; Chen, X. F.; He, Z. J.: The construction of plane elastomechanics and Mindlin plate elements of B-spline wavelet on the interval, Finite element in analysis and design 42, 1269-1280 (2006)
[36] Xiang, J. W.; Chen, X. F.; He, Z. J.: The construction of 1D wavelet finite elements for structural analysis, Computational mechanics 40, No. 2, 325-339 (2007) · Zbl 1181.74143 · doi:10.1007/s00466-006-0102-5
[37] Xiang, J. W.; Chen, X. F.; He, Z. J.: A new wavelet-based thin plate element using B-spline wavelet on the interval, Computational mechanics 41, No. 2, 243-255 (2008) · Zbl 1162.74480 · doi:10.1007/s00466-007-0182-x
[38] Xiang, J. W.; Chen, X. F.; Yang, L. F.: A class of wavelet-based flat shell elements using B-spline wavelet on the interval and its applications, CMES – computer modeling in engineering and sciences 23, No. 1, 1-12 (2008) · Zbl 1232.74125 · doi:10.3970/cmes.2008.023.001
[39] Zhu, X. Q.; Law, S. S.: Wavelet-based crack identification of Bridge beam from operational deflection time history, International journal of solids and structures 43, 2299-2317 (2006) · Zbl 1121.74390 · doi:10.1016/j.ijsolstr.2005.07.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.