×

A practical investigation to solving the inverse problem of crack identification through vibration measurements. (English) Zbl 1182.74193

Summary: Purpose - To investigate the feasibility of using single/multi variable optimisation techniques with vibration measurements in solving the inverse crack identification problem.
Design/methodology/approach - The finite element method is used to solve the forward crack problem with a special nodal crack force approach. The multi-variable optimisation approach is reduced to a much more efficient single-variable one by decoupling the physical variables in the problem.
Findings - It is shown that, for the crack identification problem, global optimisation algorithms perform much better than other algorithms relying heavily on objective function gradients. Simultaneous identification of crack size and location proved to be difficult. Decoupling of the physical variable is introduced and proved to provide efficient results with single-variable optimisation algorithms.
Research limitations/implications - Need for improving the reliability and accuracy of the procedure for smaller crack sizes. Need for developing and investigation more rigorous and robust multi-variable optimisation algorithm.
Practical implications - Any information about approximate crack size and location provides significant aid in the maintenance and online monitoring of rotating equipment.
Originality/value - The paper offers practical approach and procedure for online monitoring and crack identification of slow rotating equipment.

MSC:

74R10 Brittle fracture
74H45 Vibrations in dynamical problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Bently, D.E. and Muszynska, A. (1986), ”Detection of rotor cracks”, Proceedings of the 15th Turbomachinery Symposium, Texas A&M, Corpus Christi, TX, pp. 129-39.
[2] DOI: 10.1016/S0029-5493(99)00014-X · doi:10.1016/S0029-5493(99)00014-X
[3] DOI: 10.1016/0013-7944(94)00175-8 · doi:10.1016/0013-7944(94)00175-8
[4] DOI: 10.1016/S0013-7944(01)00076-5 · doi:10.1016/S0013-7944(01)00076-5
[5] DOI: 10.1016/S0045-7825(01)00203-1 · Zbl 1075.74647 · doi:10.1016/S0045-7825(01)00203-1
[6] DOI: 10.1016/S0378-4754(01)00295-6 · Zbl 1079.74638 · doi:10.1016/S0378-4754(01)00295-6
[7] DOI: 10.1115/1.3269848 · doi:10.1115/1.3269848
[8] Keiner, H. and Gadala, M.S. (2000), ”Vibration of a cracked drum – comparison of 3D finite element results with experimental measurements”, Proceedings of COMADEM 2000, Houston, USA, pp. 119-26.
[9] DOI: 10.1006/jsvi.2001.4106 · doi:10.1006/jsvi.2001.4106
[10] McCracken, J. and Brose, W.R. (1997), ”Risk assessment method for LP disc attachments with stress corrosion cracking”, Proceedings of the 1997 International Joint Power Generation Conference, Denver,USA, Vol. 32 No. 2, pp. 383-90.
[11] Munoz, R.Q., Ramirez, A.S. and Kubiak, J.S. (1997), ”Rotor modal analysis for a rotor crack detection”, Proceedings of the International Modal Analysis Conference, Bethel, USA, Vol. 1, pp. 877-9.
[12] DOI: 10.1006/jsvi.1996.0856 · doi:10.1006/jsvi.1996.0856
[13] DOI: 10.1016/S0013-7944(97)00078-7 · doi:10.1016/S0013-7944(97)00078-7
[14] DOI: 10.1006/jsvi.1996.0344 · doi:10.1006/jsvi.1996.0344
[15] DOI: 10.1006/jsvi.1996.0403 · doi:10.1006/jsvi.1996.0403
[16] Tsai, T-C. and Wang, Y-Z. (1998), ”The vibration of a rotor with a transverse open crack”, Proceedings of the National Science Council, Republic of China, Part A – Physical Science and Engineering, pp. 372-83.
[17] DOI: 10.1115/1.3119157 · doi:10.1115/1.3119157
[18] DOI: 10.1115/1.2893864 · doi:10.1115/1.2893864
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.