×

Robust \(H^\infty \) control of a nonlinear uncertain system via a stable nonlinear output feedback controller. (English) Zbl 1245.93044

Summary: A new approach to solving a nonlinear robust \(H^\infty\) control problem using a stable nonlinear output feedback controller is presented in this article. The class of nonlinear uncertain systems being considered is characterized in terms of integral quadratic constraints and global Lipschitz conditions describing the admissible uncertainties and nonlinearities, respectively. The nonlinear controller is able to exploit the plant nonlinearities through the inclusion of a copy of the known plant nonlinearities in the controller. The \(H^\infty\) control objective is to obtain an absolutely stable closed-loop system with a specified disturbance attenuation level. The solution of this control problem involves stabilizing solutions of parametrized algebraic Riccati equations. We apply a differential evolution algorithm to solve a nonconvex nonlinear optimisation problem arising in the controller synthesis.

MSC:

93B36 \(H^\infty\)-control
93C10 Nonlinear systems in control theory
93C41 Control/observation systems with incomplete information
93B52 Feedback control
Full Text: DOI

References:

[1] DOI: 10.1109/9.935073 · Zbl 1014.93033 · doi:10.1109/9.935073
[2] DOI: 10.1016/S0005-1098(02)00276-5 · Zbl 1034.93050 · doi:10.1016/S0005-1098(02)00276-5
[3] Başar, T., and Bernhard, P. (1995),H-Optimal Control and Related Minimax Design Problems. A Dynamic Game Approach(2nd ed.) Boston: Birkhäuser · Zbl 0835.93001
[4] DOI: 10.1109/9.975502 · Zbl 1012.93024 · doi:10.1109/9.975502
[5] DOI: 10.1016/S0005-1098(99)00212-5 · Zbl 0953.93029 · doi:10.1016/S0005-1098(99)00212-5
[6] DOI: 10.1109/TAC.2005.860271 · Zbl 1365.93398 · doi:10.1109/TAC.2005.860271
[7] Helton JW, A General Framework for Extending H Control to Nonlinear Systems (1999) · Zbl 0941.93003 · doi:10.1137/1.9780898719840
[8] DOI: 10.1016/0167-6911(94)90102-3 · Zbl 0792.93043 · doi:10.1016/0167-6911(94)90102-3
[9] Pagilla, PR and Zhu, Y. 2004. Controller and Observer Design for Lipschitz Nonlinear Systems. Proceedings of the 2004 American Control Conference, June 30–July 2. 2004. pp.2379–2384. Boston, MA, USA
[10] DOI: 10.1109/TAC.2009.2017980 · Zbl 1367.93185 · doi:10.1109/TAC.2009.2017980
[11] DOI: 10.1109/TAC.2009.2015349 · Zbl 1367.93740 · doi:10.1109/TAC.2009.2015349
[12] DOI: 10.1002/rnc.4590010304 · Zbl 0759.93027 · doi:10.1002/rnc.4590010304
[13] Petersen IR, Robust Control Design using H Methods (2000) · doi:10.1007/978-1-4471-0447-6
[14] Price KV, Differential Evolution – A Practical Approach to Global Optimization (2005)
[15] DOI: 10.1080/00207179408923090 · Zbl 0802.93007 · doi:10.1080/00207179408923090
[16] DOI: 10.1016/S0167-6911(97)00039-X · Zbl 0895.93013 · doi:10.1016/S0167-6911(97)00039-X
[17] Savkin AV, Journal of Mathematical Systems, Estimation and Control 6 pp 339– (1996)
[18] Shaiju AJ, in Proceedings of the 17th IFAC World Congress, 6–11 July (2008)
[19] Vidyasagar M, Control System Synthesis: A Factorization Approach (1985) · Zbl 0655.93001
[20] DOI: 10.1016/0005-1098(74)90021-1 · Zbl 0276.93036 · doi:10.1016/0005-1098(74)90021-1
[21] DOI: 10.1109/9.746285 · Zbl 1056.93620 · doi:10.1109/9.746285
[22] DOI: 10.1016/S0005-1098(00)00073-X · Zbl 0971.93028 · doi:10.1016/S0005-1098(00)00073-X
[23] Zhou K, Robust and Optimal Control (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.