×

Optimization of coordinate transformation matrix for \(H_{\infty}\) static-output-feedback control of linear discrete-time systems. (English) Zbl 1332.93105

Summary: This paper presents a new iterative algorithm as an upgrade to sufficient LMI conditions for the \(H_{\infty}\) Static-Output-Feedback (SOF) control of discrete-time systems. Based on an analysis of the structures of the coordinate transformation matrix and the Lyapunov matrix, the open question of how to fix the Lyapunov matrix structure raised by G. I. Bara and M. Boutayeb is replaced with the question of how to choose the coordinate transformation matrix. Then, an iterative algorithm for selecting the optimum coordinate transformation matrix that produces a locally optimal solution is presented. Finally, numerical examples demonstrate the effectiveness and advantages of this method.

MSC:

93B36 \(H^\infty\)-control
93B52 Feedback control
93B17 Transformations
93C05 Linear systems in control theory
93C55 Discrete-time control/observation systems

Software:

HIFOO; PENBMI
Full Text: DOI

References:

[1] Syrmos, V. L., C.Abdallah, P.Dorato, and K.Grigoriadis, “Static output feedback: A survey,” Automatica, Vol. 33, pp. 125-137 (1997). · Zbl 0872.93036
[2] Henrion, D., J.Löfberg, M.Kočvara, and M.Stingl, “Solving polynomial static output feedback problems with PENBMI,” Proc. IEEE Conf. Decision Contr., and European Control Conf., Seville, Spain, pp. 7581-7586 (2005).
[3] Apkarian, P. and D.Noll, “Nonsmooth H_∞ synthesis,” IEEE Trans. Autom. Control, Vol. 51, No. 1, pp. 71-86 (2006). · Zbl 1366.93148
[4] Popov, A. P., H.Werner, and M.Millstone, “Fixed‐structure discrete‐time H_∞ controller synthesis with HIFOO,” Proc. 49th IEEE Conf. Decision Contr., Atlanta, GA, USA (2010).
[5] Arzelier, D., E. N.Gryazina, D.Peaucelle, and B. T.Polyak, “Mixed LMI/randomized methods for static output feedback control design,” Proc. Amer. Control Conf., Baltimore MD, pp. 4683-4688 (2010).
[6] Blondel, V. and J. N.Tsitsiklis, “NP‐hardness of some linear control design problems,” SIAM J. Control, Vol. 35, No. 6, pp. 2118-2127 (1997). · Zbl 0892.93050
[7] Mattei, M., “Sufficient conditions for the synthesis of H_∞ fixed‐order controllers,” Int. J. Robust Nonlinear Control, Vol. 10, No. 15, pp. 1237-1248 (2000). · Zbl 0973.93007
[8] Bara, G. I. and M.Boutayeb, “Static output feedback stabilization with H_∞ performance for linear discrete‐time systems,” IEEE Trans. Autom. Control, Vol. 50, No. 2, 250-254 (2005). · Zbl 1365.93434
[9] Lee, K. H., J. H.Lee, and W. H.Kwon, “Sufficient LMI conditions for H_∞ output feedback stabilization of linear discrete‐time systems,” IEEE Trans. Autom. Control, Vol. 51, No. 4, pp. 675-680 (2006). · Zbl 1366.93505
[10] Du, X. and G.‐H.Yang, “Improved LMI Conditions for H_∞ output feedback stabilization of linear discrete‐time systems,” Int. J. Control Autom., Syst., Vol. 8, No. 1, pp. 163-168 (2010).
[11] Feng, Z.‐Y., L.Xu, S.Matsushita, and M.Wu, “Further results on sufficient LMI conditions for H_∞ static output feedback control of discrete‐time systems,” SICE J. Control, Meas., Syst. Integration, Vol. 5, No. 3, pp. 147-152 (2012).
[12] Feng, Z.‐Y., L.Xu, M.Wu, and J.‐H.She, “H_∞ static output feedback control of 2‐D discrete systems in FM Second Model,” Asian J. Control, Vol. 6, pp. 1505-1513 (2012). · Zbl 1303.93085
[13] Ghaoui, E. L., F.Oustry, and M.AitRami, “A cone complementarity linearization algorithms for static output feedback and related problems,” IEEE Trans. Autom. Control, Vol. 42, No. 8, pp. 1171-1176 (1997). · Zbl 0887.93017
[14] Geromel, J. C., C. C.deSouza, and R. E.Skelton, “LMI numerical solution for output feedback stabilization,” Proc. IEEE Conf. Decision Contr., pp. 40-44 (1995).
[15] Quoc, T. D., S.Gumussoy, W.Michiels, and M.Diehl, “Combining convex‐concave decompositions and linearization approaches for solving BMIs, with application to static output feedback,” IEEE Trans. Autom. Control, Vol. 57, No. 6, pp. 1377-1390 (2012). · Zbl 1369.90170
[16] Leibfritz, F. and E. M. E.Mostafa, “An interior point constrained trust region method for a special class of nonlinear semidefinite programming problems,” SIAM J. Optim., Vol. 12, No. 4, pp. 1048-1074 (2002). · Zbl 1035.90102
[17] Correa, R. and C. H.Ramirez, “A global algorithm for nonlinear semidefinite programming,” SIAM J. Optim., Vol. 15, No. 1, pp. 303-318 (2004). · Zbl 1106.90057
[18] Stingl, M. “On the solution of nonlinear semidefinite programs by augmented lagrangian methods,” Dissertation, Shaker Verlag, Aachen (2006).
[19] Prempain, E. and I.Postlethwaite, “Static output feedback stabilization with H_∞ performance for a class of plants,” Syst. Control Lett., Vol. 43, No. 3, pp. 159-166 (2001). · Zbl 0974.93054
[20] Shi, H.‐B. and L.Qi, “Static output feedback simultaneous stabilization via coordinates transformations with free variables,” IET Contr. Theory Appl., Vol. 3, No. 8, pp. 1051-1058 (2009).
[21] Shi, H.‐B. and L.Qi, “H_∞ and H_2 stabilizers via static output feedback based on coordinate transformations with free variables,” Int. J. Syst. Sci., Vol. 41, No. 9, pp. 1067-1074 (2010). · Zbl 1202.93128
[22] Gahinet, P. and P.Apkarian, “A linear matrix inequality approach to H_∞ control,” Int. J. Robust Nonlinear Control, Vol. 4, No. 4, pp. 421-448 (1994). · Zbl 0808.93024
[23] Cao, Y.‐Y., J.Lam, and Y.‐X.Sun, “Static output feedback stabilization: An ILMI approach,” Automatica, Vol. 34, No. 12, pp. 1641-1645 (1998). · Zbl 0937.93039
[24] Gadewadikar, J., F. L.Lewis, L.Xie, V.Kucera, and M.Abu‐Khalaf, “Parameterization of all stabilizing H_∞ static state‐feedback gains: Application to output‐feedback design,” Automatica, Vol. 43, No. 9, pp. 1597-1604 (2007). · Zbl 1128.93342
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.