×

An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem. (English) Zbl 1515.35177

Summary: We contribute to the perturbation theory of nonlinear eigenvalue problems in three ways. First, we extend the formula for the sensitivity of a simple eigenvalue with respect to a variation of a parameter to the case of multiple nonsemisimple eigenvalues, thereby providing an explicit expression for the leading coefficients of the Puiseux series of the emanating branches of eigenvalues. Second, for a broad class of delay eigenvalue problems, the connection between the finite-dimensional nonlinear eigenvalue problem and an associated infinite-dimensional linear eigenvalue problem is emphasized in the developed perturbation theory. Finally, in contrast to existing work on analyzing multiple eigenvalues of delay systems, we develop all theory in a matrix framework, i.e., without reduction of a problem to the analysis of a scalar characteristic quasi-polynomial.

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
39B72 Systems of functional equations and inequalities
47H14 Perturbations of nonlinear operators
35P20 Asymptotic distributions of eigenvalues in context of PDEs
39B42 Matrix and operator functional equations
Full Text: DOI

References:

[1] I. Boussaada and S-I. Niculescu, {\it Characterizing the codimension of zero singularities for time-delay systems: A link with Vandermonde and Birkhoff incidence matrices}, Acta Appl. Math., 145 (2016), pp. 47-88. · Zbl 1383.34093
[2] I. Boussaada and S-I. Niculescu, {\it Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A vandermonde-based approach}, IEEE Trans. Automat. Control, 61 (2016), pp. 1601-1606. · Zbl 1359.93387
[3] J. V. Burke, A. S. Lewis, and M. L. Overton, {\it Two numerical methods for optimizing matrix stability}, Linear Algebra Appl., 351-352 (2002), pp. 117-145. · Zbl 1005.65041
[4] J. Chen, P. Fu, S.-I. Niculescu, and Z. Guan, {\it An eigenvalue perturbation approach to stability analysis, part I: Eigenvalue series of matrix operators}, SIAM J. Control Optim., 48 (2010), pp. 5564-5582. · Zbl 1242.93121
[5] R. F. Curtain and H. Zwart, {\it An Introduction to Infinite-Dimensional Linear Systems Theory}, Texts Appl. Math. 21, Springer-Verlag, New York, 1995. · Zbl 0839.93001
[6] M. Dellnitz and B. Werner, {\it Computational methods for bifurcation problems with symmetries-with special attention to steady state and Hopf bifurcation points}, J. Comput. Appl. Math., 26 (1989), pp. 97-123. · Zbl 0678.65064
[7] I. Gohberg, M.A. Kaashoek, and F. van Schagen, {\it On the local theory of regular analytic matrix functions}, Linear Algebra Appl., 182 (1993), pp. 9-25. · Zbl 0771.15008
[8] K. Gu, D. Irofti, I. Boussaada, and S. I. Niculescu, {\it Migration of double imaginary characteristic roots under small deviation of two delay parameters}, in Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), 2015, pp. 6410-6415. · Zbl 1379.93055
[9] S. Gumussoy and W. Michiels, {\it Fixed-order H-infinity control for interconnected using delay differential algebraic equations}, SIAM J. Control Optim., 49 (2011), pp. 2212-2238. · Zbl 1234.93038
[10] T. T. Ha and J. A. Gibson, {\it A note on the determinant of a functional confluent Vandermonde matrix and controllability}, Linear Algebra Appl., 30 (1980), pp. 69-75. · Zbl 0445.15009
[11] J. K. Hale, {\it Theory of Functional Differential Equations}, Appl. Math. Sci. 3, Springer-Verlag, New York, 1977. · Zbl 0352.34001
[12] J. K. Hale and S. M. Verduyn Lunel, {\it Introduction to Functional Differential Equations}, Appl. Math. Sci. 99, Springer-Verlag, New York, 1993. · Zbl 0787.34002
[13] R. Hryniv and P. Lancaster, {\it On the perturbation of analytic matrix functions}, Integral Equations Operator Theory, 34 (1999), pp. 325-338. · Zbl 0940.47008
[14] E. Jarlebring, K. Meerbergen, and W. Michiels, {\it A Krylov method for the delay eigenvalue problem}, SIAM J. Sci. Comput., 32 (2010), pp. 3278-3300. · Zbl 1226.65069
[15] P. Kunkel and V. Mehrmann, {\it Differential-Algebraic Equations: Analysis and Numerical Solution}, EMS Textbk. Math., Zürich, 2006. · Zbl 1095.34004
[16] P. Lancaster, A. S. Markus, and F. Zhou, {\it Perturbation theory for matrix function: The semisimple case}, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 606-626. · Zbl 1061.15009
[17] H. Langer and B. Najman, {\it Remarks on the perturbation of analytic matrix functions} II, Integral Equations Operator Theory, 12 (1989), pp. 392-407. · Zbl 0682.47004
[18] H. Langer and B. Najman, {\it Remarks on the perturbation of analytic matrix functions} III, Integral Equations Operator Theory, 15 (1992), pp. 796-806. · Zbl 0784.47026
[19] H. Langer and B. Najman, {\it Leading coefficients of the eigenvalues of perturbed analytic matrix functions}, Integral Equations Operator Theory, 16 (1993), pp. 600-604. · Zbl 0784.47025
[20] G. G. Lorentz and K. L. Zeller, {\it Birkhoff interpolation}, SIAM J. Numer. Anal., 8 (1971), pp. 43-48. · Zbl 0229.41001
[21] W. Michiels, K. Engelborghs, P. Vansevenant, and D. Roose, {\it The continuous pole placement method for delay equations}, Automatica, 38 (2002), pp. 747-761. · Zbl 1034.93026
[22] W. Michiels and S.-I. Niculescu, {\it Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue Based Approach}, Adv. Des. Control, SIAM, Philadelphia, 2014. · Zbl 1305.93002
[23] K. Schreiber, {\it Nonlinear Eigenvalue Problems: Newton-Type Methods and Nonlinear Rayleigh Functionals}, Ph.D. thesis, TU Berlin, 2008. · Zbl 1213.65064
[24] A. P. Seyranian and A. A. Maylibaev, {\it Multiparameter Stability Theory with Mechanical Applications}, Ser. Stab. Vib. Control Syst. 13, World Scientific, Singapore, 2003. · Zbl 1047.34063
[25] F. Tisseur and K. Meerbergen, {\it The quadratic eigenvalue problem}, SIAM Rev., 43 (2001), pp. 235-286. · Zbl 0985.65028
[26] J. Vanbiervliet, K. Verheyden, W. Michiels, and S. Vandewalle, {\it A nonsmooth optimization approach for the stabilization of linear time-delay systems}, ESAIM Control Optim. Calc. Var., 14 (2008), pp. 478-493. · Zbl 1146.65056
[27] H. Voss, {\it Nonlinear eigenvalue problems}, in Handbook of Linear Algebra, L. Hogben, ed., CRC Press, Boca Raton, FL, 2014.
[28] J. Wilkening, {\it An algorithm for computing Jordan chains and inverting analytic matrix functions}, Linear Algebra Appl., 427 (2007), pp. 6-25. · Zbl 1132.47010
[29] Z. Wu and W. Michiels, {\it Reliably computing all characteristic roots of delay differential equations in a given right half plane}, J. Comput. Appl. Math., 236 (2012), pp. 2499-2514. · Zbl 1237.65065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.