×

Hamiltonian quantum simulation with bounded-strength controls. (English) Zbl 1451.81256

Summary: We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev’s honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed.

MSC:

81Q93 Quantum control
81P68 Quantum computation
81V70 Many-body theory; quantum Hall effect

References:

[1] Feynman R 1982 Int. J. Theor. Phys.21 467 · doi:10.1007/BF02650179
[2] Lloyd S 1993 Science261 1569 · doi:10.1126/science.261.5128.1569
[3] Buluta I and Nori F 2009 Science326 108 · doi:10.1126/science.1177838
[4] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys.86 154 · doi:10.1103/RevModPhys.86.153
[5] Sanders B C 2013 Lect. Notes Comp. Sci.7948 1 · Zbl 1406.68033 · doi:10.1007/978-3-642-38986-3_1
[6] Müller M, Diehl S, Pupillo G and Zoller P 2012 Adv. At. Mol. Opt. Phys.61 1 · doi:10.1016/B978-0-12-396482-3.00001-6
[7] Schirmer S 2007 Lect. Notes Control Inf. Sci.336 293 · Zbl 1121.93006 · doi:10.1007/978-3-540-73890-9
[8] D’Alessandro D 2007 Introduction to Quantum Control and Dynamics (Boca Raton, FL: Chapman and Hall/CRC) · Zbl 1139.81001 · doi:10.1201/9781584888833
[9] Ernst R R, Bodenhausen G and Wokaun A 1987 Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford: Clarendon)
[10] Haeberlen U and Waugh J S 1968 Phys. Rev.175 453 · doi:10.1103/PhysRev.175.453
[11] Lidar D A and Brun T (ed) 2013 Quantum Error Correction · doi:10.1017/CBO9781139034807
[12] Viola L and Lloyd S 1998 Phys. Rev. A 58 2733 · doi:10.1103/PhysRevA.58.2733
[13] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett.82 2417 · Zbl 1042.81524 · doi:10.1103/PhysRevLett.82.2417
[14] Viola L, Lloyd S and Knill E 1999 Phys. Rev. Lett.83 4888 · doi:10.1103/PhysRevLett.83.4888
[15] Zanardi P 1999 Phys. Lett. A 258 77 · Zbl 0934.81003 · doi:10.1016/S0375-9601(99)00365-5
[16] Viola L 2002 Phys. Rev. A 66 012307 · doi:10.1103/PhysRevA.66.012307
[17] Herdman C M, Young K C, Scarola V W, Sarovar M and Whaley K B 2010 Phys. Rev. Lett.104 230501 · doi:10.1103/PhysRevLett.104.230501
[18] Weimer H, Müller M, Lesanovsky I, Zoller P and Büchler H P 2010 Nat. Phys.6 382 · doi:10.1038/nphys1614
[19] Mostame S, Rebentrost P, Eisfeld A, Kerman A J, Tsomokos D I and Aspuru-Guzik A 2012 New J. Phys.14 105013 · doi:10.1088/1367-2630/14/10/105013
[20] Lanyon B P et al 2011 Science334 57 · doi:10.1126/science.1208001
[21] Britton J W, Sawyer B C, Keith A C, Wang C-C J, Freericks J K, Uys H, Biercuk M J and Bollinger J J 2012 Nature484 489 · doi:10.1038/nature10981
[22] Richerme P, Gong Z-X, Lee A, Senko C, Smith J, Foss-Feig M, Michalakis S, Gorshkov A V and Monroe C 2014 arXiv:1401.5088
[23] Bravyi S, DiVincenzo D P, Loss D and Terhal B M 2008 Phys. Rev. Lett.101 070503 · doi:10.1103/PhysRevLett.101.070503
[24] Wocjan P, Janzing D and Beth T 2002 Quantum Inf. Comput.2 117 · Zbl 1187.81081
[25] Dodd J L, Nielsen M A, Bremner M J and Thew R T 2002 Phys. Rev. A 65 040301 · doi:10.1103/PhysRevA.65.040301
[26] Wocjan P, Rötteler M, Janzing D and Beth T 2002 Phys. Rev. A 65 042309 · Zbl 1187.81082 · doi:10.1103/PhysRevA.65.042309
[27] Bennett C H, Cirac J I, Leifer M S, Leung D W, Linden N, Popescu S and Vidal G 2002 Phys. Rev. A 66 012305 · doi:10.1103/PhysRevA.66.012305
[28] Masanes L, Vidal G and Latorre J I 2002 Quantum Inf. Comput.2 285 · Zbl 1187.81072
[29] Wocjan P, Roetteler M, Janzing D and Beth T 2002 Quantum Inf. Comput.2 133 · Zbl 1187.81082
[30] Liu Y C, Xu Z F, Jin G R and You L 2011 Phys. Rev. Lett.107 013601 · doi:10.1103/PhysRevLett.107.026405
[31] Tanamoto T, Stojanović V M, Bruder C and Becker D 2013 Phys. Rev. A 87 052305 · doi:10.1103/PhysRevA.87.052305
[32] Becker D, Tanamoto T, Hutter A, Pedrocchi F L and Loss D 2013 Phys. Rev. A 87 042340 · doi:10.1103/PhysRevA.87.042340
[33] Viola L and Knill E 2002 Phys. Rev. Lett90 037901 · doi:10.1103/PhysRevLett.90.037901
[34] Khodjasteh K and Viola L 2009 Phys. Rev. Lett.102 080501 · doi:10.1103/PhysRevLett.102.080501
[35] Khodjasteh K and Viola L 2009 Phys. Rev. A 80 032314 · doi:10.1103/PhysRevA.80.032314
[36] Khodjasteh K, Lidar D A and Viola L 2010 Phys. Rev. Lett.104 090501 · doi:10.1103/PhysRevLett.104.090501
[37] Khodjasteh K, Bluhm H and Viola L 2012 Phys. Rev. A 86 042329 · doi:10.1103/PhysRevA.86.042329
[38] Viola L, Knill E and Lloyd S 2000 Phys. Rev. Lett.85 3520 · doi:10.1103/PhysRevLett.85.3520
[39] Magnus W 1954 Commun Pure Appl. Math.7 649 · Zbl 0056.34102 · doi:10.1002/(ISSN)1097-0312
[40] Khodjasteh K and Lidar D A 2008 Phys. Rev. A 78 012355 · doi:10.1103/PhysRevA.78.012355
[41] Blanes S, Casas F, Oteo J A and Ros J 2009 Phys. Rep.470 151 · doi:10.1016/j.physrep.2008.11.001
[42] Haeberlen U 1976 High Resolution NMR in Solids: Selective Averaging vol 1 (New York: Academic)
[43] Khodjasteh K, Erdélyi T and Viola L 2011 Phys. Rev. A 83 023305(R) · doi:10.1103/PhysRevA.83.020305
[44] Bollobás B 1998 Modern Graph Theory(Graduate Texts in Mathematics vol 184) (Berlin: Springer) · Zbl 0902.05016 · doi:10.1007/978-1-4612-0619-4
[45] Godsil C and Royle G 2001 Algebraic Graph Theory(Graduate Texts in Mathematics vol 207) (Berlin: Springer) · Zbl 0968.05002 · doi:10.1007/978-1-4613-0163-9
[46] Viola L and Knill E 2005 Phys. Rev. Lett.94 060502 · doi:10.1103/PhysRevLett.94.060502
[47] Santos L F and Viola L 2006 Phys. Rev. Lett.97 150501 · doi:10.1103/PhysRevLett.97.058001
[48] Santos L F and Viola L 2008 New J. Phys.10 083009 · doi:10.1088/1367-2630/10/1/013005
[49] Cywinski L, Lutchyn R M, Nave C P and Das Sarma S 2008 Phys. Rev. B 77 174509 · doi:10.1103/PhysRevB.77.174509
[50] Stollsteimer M and Mahler G 2001 Phys. Rev. A 64 052301 · doi:10.1103/PhysRevA.64.052301
[51] Kitaev A 2006 Ann. Phys.321 2 · Zbl 1125.82009 · doi:10.1016/j.aop.2005.10.005
[52] Stannigel K, Hauke P, Marcos D, Hafezi M, Diehl S, Dalmonte M and Zoller P 2013 arXiv:1308.0528
[53] Khodjasteh K, Sastrawan J, Hayes D, Green T J, Biercuk M J and Viola L 2013 Nat. Commun.4 2045 · doi:10.1038/ncomms3045
[54] Hayes D, Flammia S T and Biercuk M J 2013 arXiv:1309.6736
[55] Ashok A and Cappellaro P 2013 Phys. Rev. Lett.110 220503 · doi:10.1103/PhysRevLett.110.220503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.