×

Algebraic structures and stochastic differential equations driven by Lévy processes. (English) Zbl 1425.60055

Summary: We construct an efficient integrator for stochastic differential systems driven by Lévy processes. An efficient integrator is a strong approximation that is more accurate than the corresponding stochastic Taylor approximation, to all orders and independent of the governing vector fields. This holds provided the driving processes possess moments of all orders and the vector fields are sufficiently smooth. Moreover, the efficient integrator in question is optimal within a broad class of perturbations for half-integer global root mean-square orders of convergence. We obtain these results using the quasi-shuffle algebra of multiple iterated integrals of independent Lévy processes.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60G51 Processes with independent increments; Lévy processes
34F05 Ordinary differential equations and systems with randomness

References:

[1] Applebaum D. (2004) Lévy processes and stochastic calculus. Cambridge, UK: Cambridge University Press. · Zbl 1073.60002
[2] Platen E, Bruti-Liberati N. (2010) Numerical solution of stochastic differential equations with jumps in finance. Berlin, Germany: Springer. · Zbl 1225.60004
[3] Platen E. (1980) Approximation of Itô integral equations. In Stochastic differential systems. Lecture Notes in Control and Information Science, vol. 25, pp. 172-176. Berlin, Germany: Springer. (doi:10.1007/BFb0004008) · Zbl 0497.93064 · doi:10.1007/BFb0004008
[4] Platen E. (1982) A generalized Taylor formula for solutions of stochastic differential equations. SANKHYA A 44, 163-172. · Zbl 0586.60049
[5] Platen E, Wagner W. (1982) On a Taylor formula for a class of Itô processes. Probab. Math. Stat. 3, 37-51. · Zbl 0528.60053
[6] Curry C, Ebrahimi-Fard K, Malham SJA, Wiese A. (2014) Lévy processes and quasi-shuffle algebras. Stochastics 86, 632-642. (doi:10.1080/17442508.2013.865131) · Zbl 1337.60152 · doi:10.1080/17442508.2013.865131
[7] Malham SJA, Wiese A. (2014) Efficient almost-exact Levy area sampling. Stat. Probab. Lett. 88, 50-55. (doi:10.1016/j.spl.2014.01.022) · Zbl 1296.60180 · doi:10.1016/j.spl.2014.01.022
[8] Malham SJA, Wiese A. (2009) Stochastic expansions and Hopf algebras. Proc. R. Soc. A 465, 3729-3749. (doi:10.1098/rspa.2009.0203) · Zbl 1195.60080 · doi:10.1098/rspa.2009.0203
[9] Castell F, Gaines J. (1995) An efficient approximation method for stochastic differential equations by means of the exponential Lie series. Math. Comp. Simul. 38, 13-19. (doi:10.1016/0378-4754(93)E0062-A) · Zbl 0824.60054 · doi:10.1016/0378-4754(93)E0062-A
[10] Castell F, Gaines J. (1996) The ordinary differential equation approach to asymptotically efficient schemes for solutions of stochastic differential equations. Ann. Inst. H. Poincaré Probab. Stat. 32, 231-250. · Zbl 0851.60054
[11] Ebrahimi-Fard K, Lundervold A, Malham SJA, Munthe-Kaas H, Wiese A. (2012) Algebraic structure of stochastic expansions and efficient simulation. Proc. R. Soc. A 468, 2361-2382. (doi:10.1098/rspa.2012.0024) · Zbl 1371.60102 · doi:10.1098/rspa.2012.0024
[12] Cont R, Tankov P. (2004) Financial modelling with jump processes. Boca Raton, FL: Chapman & Hall/CRC. · Zbl 1052.91043
[13] Barndorff-Nielsen O, Mikosch T, Resnick S (eds). (2001) Lévy processes: theory and applications. New York, NY: Springer. · Zbl 0961.00012
[14] Jacod J. (2004) The Euler scheme for Lévy driven stochastic differential equations: limit theorems. Ann. Probab. 32, 1830-1872. (doi:10.1214/009117904000000667) · Zbl 1054.65008 · doi:10.1214/009117904000000667
[15] Fournier N. (2012) Simulation and approximation of Lévy-driven stochastic differential equations. ESAIM Probab. Stat. 15, 233-248. (doi:10.1051/ps/2009017) · Zbl 1273.60080 · doi:10.1051/ps/2009017
[16] Higham DJ, Kloeden PE. (2005) Numerical methods for nonlinear stochastic differential equations with jumps. Numer. Math. 101, 101-119. (doi:10.1007/s00211-005-0611-8) · Zbl 1186.65010 · doi:10.1007/s00211-005-0611-8
[17] Higham DJ, Kloeden PE. (2006) Convergence and stability of implicit methods for jump-diffusion systems. Int. J. Numer. Anal. Model. 3, 125-140. · Zbl 1109.65007
[18] Protter P, Talay D. (1997) The Euler scheme for Lévy driven stochastic differential equations. Ann. Probab. 25, 393-423. (doi:10.1214/aop/1024404293) · Zbl 0876.60030 · doi:10.1214/aop/1024404293
[19] Barski M. (2015) Approximations for solutions of Lévy-type stochastic differential equations. (http://arxiv.org/abs/1512.06572v1)
[20] Friz P, Shekhar A. (2012) General rough integration, Lévy rough paths and a Lévy-Kintchine type formula. (http://arxiv.org/abs/1212.5888) · Zbl 1412.60103
[21] Clark JMC. (1982) An efficient approximation for a class of stochastic differential equations. In Advances in Filtering and Optimal Stochastic Control: Proc. of the IFIP-WG7/1 Working Conf. Cocoyoc, Mexico, 1-6 February 1982. Lecture Notes in Control and Information Sciences, vol. 42. Berlin/Heidelberg, Germany: Springer. (doi:10.1007/BFb0004526) · Zbl 0488.00026 · doi:10.1007/BFb0004526
[22] Newton NJ. (1986) An asymptotically efficient difference formula for solving stochastic differential equations. Stochastics 19, 175-206. (doi:10.1080/17442508608833423) · Zbl 0618.60053 · doi:10.1080/17442508608833423
[23] Newton NJ. (1991) Asymptotically efficient Runge-Kutta methods for a class of Itô and Stratonovich equations. SIAM J. Appl. Math. 51, 542-567. (doi:10.1137/0151028) · Zbl 0724.65135 · doi:10.1137/0151028
[24] Kloeden PE, Platen E. (1999) Numerical solution of stochastic differential equations, 3rd (Printing). Berlin, Germany: Springer.
[25] Strichartz RS. (1987) The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations. J. Funct. Anal. 72, 320-345. (doi:10.1016/0022-1236(87)90091-7) · Zbl 0623.34058 · doi:10.1016/0022-1236(87)90091-7
[26] Gaines J. (1994) The algebra of iterated stochastic integrals. Stochast. Stochast. Rep. 49, 169-179. (doi:10.1080/17442509408833918) · Zbl 0827.60038 · doi:10.1080/17442509408833918
[27] Li CW, Liu XQ. (1997) Algebraic structure of multiple stochastic integrals with respect to Brownian motions and Poisson processes. Stochast. Stoch. Rep. 61, 107-120. (doi:10.1080/17442509708834118) · Zbl 0884.60047 · doi:10.1080/17442509708834118
[28] Newman K, Radford DE. (1979) The cofree irreducible Hopf algebra on an algebra. Am. J. Math. 101, 1025-1045. (doi:10.2307/2374124) · Zbl 0422.16003 · doi:10.2307/2374124
[29] Hudson RL, Parthasarathy KR. (1984) Quantum Itô’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301-323. (doi:10.1007/BF01258530) · Zbl 0546.60058 · doi:10.1007/BF01258530
[30] Hudson RL, Parthasarathy KR. (1993) The Casimir chaos map for U(N). In Tatra Mountains Mathematical Proceedings, vol. 3, 1-9.
[31] Hudson RL, Parthasarathy KR. (1994) Casimir chaos in a Boson Fock space. J. Funct. Anal. 119, 319-339. (doi:10.1006/jfan.1994.1013) · Zbl 0804.60052 · doi:10.1006/jfan.1994.1013
[32] Cohen PB, Eyre TWM, Hudson RL. (1995) Higher order Itô product formula and generators of evolutions and flows. Int. J. Theor. Phys. 34, 1-6. (doi:10.1007/BF00670982) · Zbl 0827.58067 · doi:10.1007/BF00670982
[33] Hudson RL. (2012) Sticky shuffle product Hopf algebras and their stochastic representations. In New trends in stochastic analysis and related topics. Interdiscip. Math. Sci., no. 12, pp. 165-181. Hackensack, NJ: World Sci. Publ. · Zbl 1266.81123
[34] Hudson RL. (2009) Hopf-algebraic aspects of iterated stochastic integrals. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 12, 479-496. (doi:10.1142/S0219025709003835) · Zbl 1182.81052 · doi:10.1142/S0219025709003835
[35] Hoffman ME. (2000) Quasi-shuffle products. J. Algebr. Comb. 11, 49-68. (doi:10.1023/A:1008791603281) · Zbl 0959.16021 · doi:10.1023/A:1008791603281
[36] Eilenberg S, MacLane S. (1953) On the groups H(π, n). Ann. Math. 58, 55-106. (doi:10.2307/1969820) · Zbl 0050.39304 · doi:10.2307/1969820
[37] Schützenberger M-P. (1958) Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathématiques appliquées. Séminaire P. Dubreil. Algèbre et théorie des nombres 12, 1-23.
[38] Chen K-T. (1968) Algebraic paths. J. Algebr. 10, 8-36. (doi:10.1016/0021-8693(68)90102-6) · Zbl 0204.33803 · doi:10.1016/0021-8693(68)90102-6
[39] Reutenauer C. (1993) Free Lie algebras. London Mathematical Society Monographs. Oxford: Clarendon Press. · Zbl 0798.17001
[40] Radford DE. (1979) A natural ring basis for the shuffle algebra and an application to group schemes. J. Algebr. 58, 432-454. (doi:10.1016/0021-8693(79)90171-6) · Zbl 0409.16011 · doi:10.1016/0021-8693(79)90171-6
[41] Sussmann HJ. (1986) A product expansion for the Chen series. In Theory and applications of nonlinear control systems (eds CI Byrnes, A Lindquist). Elsevier Science Publishers B.V. (North Holland). · Zbl 0619.93021
[42] Magnus W. (1954) On the exponential solution of differential equations for a linear operator. Comm. Pure Appl. Math. 7, 649-673. (doi:10.1002/(ISSN)1097-0312) · Zbl 0056.34102 · doi:10.1002/(ISSN)1097-0312
[43] Kunita H. (1980) On the representation of solutions of stochastic differential equations. Lecture Notes in Math., no. 784, pp. 282-304. Berlin, Germany: Springer. · Zbl 0438.60047
[44] Fliess M. (1981) Fonctionelles causales non linéaires et indéterminées non commutatives. Bulletin de la Société Mathématique de France 109, 3-40. (doi:10.24033/bsmf.1931) · Zbl 0476.93021 · doi:10.24033/bsmf.1931
[45] Azencott R. (1982) Formule de Taylor stochastique et développement asymptotique d’intégrales de Feynman. In Seminar on Probability XVI. Lecture Notes in Mathematics, no. 921, pp. 237-285. Berlin, Germany: Springer. · Zbl 0484.60064
[46] Ben Arous G. (1989) Flots et series de Taylor stochastiques. Probab. Theory Relat. Fields 81, 29-77. (doi:10.1007/BF00343737) · Zbl 0639.60062 · doi:10.1007/BF00343737
[47] Grossman R, Larson RG. (1992) The realization of input-output maps using bialgebras. Forum Math. 4, 109-121. (doi:10.1515/form.1992.4.109) · Zbl 0754.16021 · doi:10.1515/form.1992.4.109
[48] Castell F. (1993) Asymptotic expansion of stochastic flows. Probab. Theory Related Fields 96, 225-239. (doi:10.1007/BF01192134) · Zbl 0794.60054 · doi:10.1007/BF01192134
[49] Lyons T. (1998) Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14, 215-310. (doi:10.4171/RMI) · Zbl 0923.34056 · doi:10.4171/RMI
[50] Burrage K, Burrage PM. (1999) High strong order methods for non-commutative stochastic ordinary differential equation systems and the Magnus formula. Phys. D 133, 34-48. (doi:10.1016/S0167-2789(99)00097-4) · Zbl 1194.65023 · doi:10.1016/S0167-2789(99)00097-4
[51] Kawski M. (2001) The combinatorics of nonlinear controllability and noncommuting flows. In Lectures given at the Summer School on Mathematical Control Theory, Trieste, September 3-28. · Zbl 1157.93353
[52] Baudoin F. (2004) An introduction to the geometry of stochastic flows. London, UK: Imperial College Press. · Zbl 1085.60002
[53] Lyons T, Victoir N. (2004) Cubature on Wiener space. Proc. R. Soc. Lond. A 460, 169-198. (doi:10.1098/rspa.2003.1239) · Zbl 1055.60049 · doi:10.1098/rspa.2003.1239
[54] Brouder C. (2000) Runge-Kutta methods and renormalization. Eur. Phys. J. C 12, 521-534. (doi:10.1007/s100529900235) · doi:10.1007/s100529900235
[55] Connes A, Kreimer D. (1998) Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199, 203-242. (doi:10.1007/s002200050499) · Zbl 0932.16038 · doi:10.1007/s002200050499
[56] Butcher JC. (1972) An algebraic theory of integration methods. Math. Comp. 26, 79-106. (doi:10.1090/S0025-5718-1972-0305608-0) · Zbl 0258.65070 · doi:10.1090/S0025-5718-1972-0305608-0
[57] Hairer E, Lubich C, Wanner G. (2002) Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics. Berlin/Heideberg, Germany: Springer-Verlag. · Zbl 0994.65135
[58] Munthe-Kaas HZ, Wright WM. (2007) On the Hopf algebraic structure of Lie group integrators. Found. Comput. Math. 8, 227-257. (doi:10.1007/s10208-006-0222-5) · Zbl 1147.16028 · doi:10.1007/s10208-006-0222-5
[59] Lundervold A, Munthe-Kaas H. (2011) Hopf algebras of formal diffeomorphisms and numerical integration on manifolds. Contemp. Math. 539, 295-324. (doi:10.1090/conm/539) · Zbl 1214.81008 · doi:10.1090/conm/539
[60] McLachlan RI, Modin K, Munthe-Kaas H, Verdier O. (2016) What are Butcher series, really? (http://arxiv.org/abs/1512.00906v2)
[61] Ebrahimi-Fard L, Malham SJA, Patras F, Wiese A. (2015) Flows and stochastic Taylor series in Itô calculus. J. Phys. A. 48, 495202 (17pp). (doi:10.1088/1751-8113/48/49/495202) · Zbl 1416.60058 · doi:10.1088/1751-8113/48/49/495202
[62] Ebrahimi-Fard L, Malham SJA, Patras F, Wiese A. (2015) The exponential Lie series for continuous semimartingales. Proc. R. Soc. A 471, 20150429. (doi:10.1098/rspa.2015.0429) · Zbl 1371.60113 · doi:10.1098/rspa.2015.0429
[63] Hairer M, Kelly D. (2015) Geometric versus non-geometric rough paths. Annales de l’I.H.P. Probabilités et Statistiques, 51, 207-251. (doi:10.1214/13-AIHP564) · Zbl 1314.60115 · doi:10.1214/13-AIHP564
[64] Gubinelli M, Tindel S. (2010) Rough evolution equations. Ann. Probab. 38, 1-75. (doi:10.1214/08-AOP437) · Zbl 1193.60070 · doi:10.1214/08-AOP437
[65] Gubinelli M. (2010) Ramification of rough paths. J. Differ. Equ. 248, 693-721. (doi:10.1016/j.jde.2009.11.015) · Zbl 1315.60065 · doi:10.1016/j.jde.2009.11.015
[66] Hairer M. (2014) A theory of regularity structures. Inventiones mathematicae 198, 269-504. (doi:10.1007/s00222-014-0505-4) · Zbl 1332.60093 · doi:10.1007/s00222-014-0505-4
[67] Protter P. (2003) Stochastic integration and differential equations, 2nd edn. Berlin, Germany: Springer. · Zbl 1025.60026
[68] Abe E. (1980) Hopf algebras. Cambridge, UK: Cambridge University Press. · Zbl 0476.16008
[69] Curry C. (2014) Algebraic structures in stochastic differential equations. PhD thesis, Heriot-Watt University.
[70] Milstein GN. (1987) A theorem on the order of convergence of mean-square approximations of solutions of systems of stochastic differential equations. Theor. Prob. Appl. 32, 738-741. (doi:10.1137/1132113) · Zbl 0655.60046 · doi:10.1137/1132113
[71] Milstein GN. (1995) Numerical integration of stochastic differential equations. Mathematics and its Applications, no. 313. Kluwer Academic Publishers.
[72] Lord G, Malham SJA, Wiese A. (2008) Efficient strong integrators for linear stochastic systems. SIAM J. Numer. Anal. 46, 2892-2919. (doi:10.1137/060656486) · Zbl 1179.60046 · doi:10.1137/060656486
[73] Malham SJA, Wiese A. (2008) Stochastic Lie group integrators. SIAM J. Sci. Comput. 30, 597-617. (doi:10.1137/060666743) · Zbl 1165.60026 · doi:10.1137/060666743
[74] Hoffman ME, Ihara K. (2012) Quasi-shuffle products revisited. Preprint. Max-Planck-Institut für Mathematik Bonn.
[75] Situ R. (2005) Theory of stochastic differential equations with jumps and applications: mathematical and analytical techniques with applications to engineering. Berlin, Germany: Springer. · Zbl 1070.60002
[76] Fujiwara T, Kunita H. (1985) Stochastic differential equations of jump type and Lévy processes in diffeomorphisms group. J. Math. Kyoto Univ. 25, 71-106. (doi:10.1215/kjm/1250521160) · Zbl 0575.60065 · doi:10.1215/kjm/1250521160
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.