×

Spatiotemporal epidemic models for rabies among dog with vaccination approach. (English) Zbl 07924062

Summary: This study develops an optimal control strategy for canine rabies transmission using a two-dimensional spatiotemporal model with spatial dynamics. Our objective is to minimize the number of infected and exposed individuals while reducing vaccination costs.
We rigorously establish the existence of optimal control and provide a detailed characterization. Numerical simulations show that early intervention, in particular timely vaccinationat the onset of an outbreak, effectively controls the disease.
Our model highlights the importance of spatial factors in rabies spread and underlines the need for proactive vaccination campaigns, providing valuable insights for public healthpolicy and intervention strategies.

MSC:

47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics

References:

[1] L.J. Allen, D.A. Flores, R.K. Ratnayake and J.R. Herbold, Discrete-time deterministic and stochastic models for the spread of rabies, Appl. Math. Comput., 132(2-3) (2002), 271-292. · Zbl 1017.92027
[2] R.M. Anderson and R.M. et May, Infectious diseases of humans, dynamics and control, OUP Oxford, Medical, (1991), 757 pages.
[3] M. Artois, M. Langlais and C. Suppo, Simulation of rabies control within an increasing fox population, Ecological Mod., 97(1-2) (1997), 23-34.
[4] J.K.K. Asamoah, F.T. Oduro, E. Bonyah and B. Seidu, Modelling of rabies transmission dynamics using optimal control analysis, J. Appl. Math., (2017), https://doi.org/10.1155/2017/2451237. · Zbl 1437.92109 · doi:10.1155/2017/2451237
[5] V. Barbu, Mathematical methods in optimization of differential systems, Springer Sci-ence & Business Media, 310 (1994). · Zbl 0819.49002
[6] Y. Benfatah, A. El Bhih, M. Rachik and A. Tridane, On the Maximal Output Admissible Set for a Class of Bilinear Discrete-time Systems, Int. J. Control Autom. Syst., vol. 19, (2021), pp. 35513568, https://doi.org/10.1007/s12555-020-0486-6. · doi:10.1007/s12555-020-0486-6
[7] H. Brezis, P.G. Ciarlet and J.L. Lions, Analyse fonctionnelle: thorie et applications, vol. 91, Dunod, Paris, (1999).
[8] J. Chen, L. Zou, Z. Jin, and S. Ruan, Modeling the geographic spread of rabies in China, PLoS Neglected Tropical Diseases, 9(5) (2015).
[9] N.N. Chidumayo, System dynamics modelling approach to explore the effect of dog de-mography on rabies vaccination coverage in Africa, PLoS One, 13(10) (2018).
[10] J.E. Childs, A.T. Curns, M.E. Dey, L.A. Real, L. Feinstein, O.N. Bjrnstad and J.W. Krebs, Predicting the local dynamics of epizootic rabies among raccoons in the United States, Appl. Math. Comput., 216(2) (2010), 395-409.
[11] S. Chinviriyasit and W. Chinviriyasit, Numerical modelling of an SIR epidemic model with diffusion, Appl. Math. Comput., 216(2) (2010), 395-409. · Zbl 1184.92028
[12] T. Clayton, S.D. Sylvester, L.J. Gross, S. Lenhart and L.A. Real, Optimal control of a rabies epidemic model with a birth pulse, J. Biol. Dyn., 4(1) (2010), 43-58. · Zbl 1315.92074
[13] M. Coyne, G. Smith and F.E. McAllister, Mathematic model for the population biology of rabies in raccoons in the mid-Atlantic states, Am. J. Vet. Res., 50(12) (1989), 2148-2154.
[14] B. Dharmalingam and L. Jothi, RDIS: The Rabies Disease Information System, Bioin-formation, 11(11) (2015), 506.
[15] D.T. Dimitrov, T.G. Hallam, C.E. Rupprecht, A.S. Turmelle and G.F. McCracken, Integrative models of bat rabies immunology, epizootiology and disease demography, J. Theor. Biol., 245(3) (2007), 498-509. · Zbl 1451.92283
[16] N.D. Evans and A.J. Pritchard, A control theoretic approach to containing the spread of rabies, Math. Med. Biol., 18(1) (2001), 1-23. · Zbl 0985.92035
[17] K. Hampson, J. Dushoff, J. Bingham, G. Brckner, Y.H. Ali and A. Dobson, Synchronous cycles of domestic dog rabies in sub-Saharan Africa and the impact of control efforts, Proc. Natl. Acad. Sci. U. S. A., 104(18) (2007), 7717-7722.
[18] A. Källen, P. Arcuri and J.D. Murray, A simple model for the spatial spread and control of rabies, J. Theor. Biol., 116(3) (1985), 377-393.
[19] K.I. Kim, Z. Lin and L. Zhang, Avian-human influenza epidemic model with diffusion, Nonlinear Anal. Real World Appl., 11(1) (2010), 313-322. · Zbl 1230.35047
[20] A.E.A. Laaroussi, A. El Bhih and M. Rachik, Optimal vaccination and treatment policies with constrained inequalities to study limited vaccination resources for a multistrain re-action diffusion SEIR model of COVID-19, Partial Differ. Equ. Appl. Math., 10 (2024), 100684, https://doi.org/10.1016/j.padiff.2024.100684. · doi:10.1016/j.padiff.2024.100684
[21] A.E.A. Laaroussi, R. Ghazzali, M. Rachik and S. Benrhila, Modeling the spatiotemporal transmission of Ebola disease and optimal control: a regional approach, Int. J. Dyn. Control, 7(3) (2019), 1110-1124.
[22] A.E.A. Laaroussi, M. Rachik and M. Elhia, An optimal control problem for a spatiotem-poral SIR model, Int. J. Dyn. Control, 6 (2018), 384-397.
[23] E.M. Lotfi, M. Maziane, K. Hattaf and N. Yousfi, Partial differential equations of an epidemic model with spatial diffusion, Int. J. Partial Differ. Equ., (2014). · Zbl 1300.92103
[24] M. Michael, M. Libin and H. Weimin, Convergence of the forward-backward sweep method in optimal control, Comput. Optim. Appl., 53(1) (2012), 207-226. · Zbl 1258.49040
[25] R.M. Neilan and S. Lenhart, Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons, J. Math. Anal. Appl., 378(2) (2011), 603-619. · Zbl 1208.92070
[26] A. Pazy, Semigroups of linear operators and applications to partial differential equations, vol. 44, Springer Science and Business Media, (2012).
[27] S. Ruan, Spatiotemporal epidemic models for rabies among animals, Infect. Dis. Model., 2(3) (2017), 277-287.
[28] C.E. Rupprecht, C.A. Hanlon and T. Hemachudha, Rabies re-examined, Lancet Infect. Dis., 2(6) (2002), 327-343.
[29] C.A. Russell, L.A. Real and D.L. Smith, Spatial control of rabies on heterogeneous landscapes, PLoS One, 1(1) (2006).
[30] K.F. Smith, A.P. Dobson, F.E. McKenzie, L.A. Real, D.L. Smith and M.L. Wilson, Ecological theory to enhance infectious disease control and public health policy, Front. Ecol. Environ., 3(1) (2005), 29-37.
[31] G.C. Smith and S. Harris, Rabies in urban foxes (Vulpes vulpes) in Britain: the use of a spatial stochastic simulation model to examine the pattern of spread and evaluate the efficacy of different control regimes, Philos. Trans. R. Soc. Lond. B Biol. Sci., 334(1271) (1991), 459-479.
[32] D.L. Smith, B. Lucey, L.A. Waller, J.E. Childs and L.A. Real, Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes, Proc. Natl. Acad. Sci. USA, 99(6) (2002), 3668-3672.
[33] J. Smoller, Shock waves and reactiondiffusion equations, vol. 258, Springer Science and Business Media, (2012).
[34] J.H. Swart, Hopf bifurcation and stable limit cycle behavior in the spread of infectious disease, with special application to fox rabies, Math. Biosci., 95(2) (1989), 199-207. · Zbl 0687.92013
[35] H.H. Thulke, V. Grimm, M.S. Mller, C. Staubach, L. Tischendorf, C. Wissel and F. Jeltsch, From pattern to practice: a scaling-down strategy for spatially explicit modelling illustrated by the spread and control of rabies, Ecol. Model., 117(2-3) (1999), 179-202.
[36] I.I. Vrabie, C0-semigroups and applications, vol. 191 of North-Holland Mathematics Studies, (2003). · Zbl 1119.47044
[37] X.K. Wei, Y. Xiong, X.N. Li, M. Zheng, Y. Pan, X.X. He, J.J. Liang, C. Liu, Y.Z. Zhong, L.B. Zou, et al., Vaccination demonstration zone successfully controls rabies in Guangxi province, China, BMC Infect. Dis., 18(1) (2018), 386.
[38] X. Wu, R. Hu, Y. Zhang, G. Dong and C.E. Rupprecht, Reemerging rabies and lack of systemic surveillance in Peoples Republic of China, Emerg. Infect. Dis., 15(8) (2009), 1159.
[39] J. Zhang, Z. Jin, G.Q. Sun, X. Sun and S. Ruan, Spatial spread of rabies in China, J. Appl. Anal. Comput, 2 (2012), 111-126. · Zbl 1304.92126
[40] J. Zhang, Z. Jin, G.Q. Sun, T. Zhou and S. Ruan, Analysis of rabies in China: trans-mission dynamics and control, PLoS One, 6(7) (2011).
[41] J. Zinsstag, S. Drr, M.A. Penny, R. Mindekem, F. Roth, S M. Gonzalez, S. Naissengar and J. Hattendorf, Transmission dynamics and economics of rabies control in dogs and humans in an African city, Proc. Natl. Acad. Sci. USA, 106(35) (2009), 14996-15001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.