×

Mathematical analysis of rabies infection. (English) Zbl 1442.92156

Summary: A mathematical model is proposed to study the dynamics of the transmission of rabies, incorporating predation of dogs by humans. The model is shown to have a unique disease-free equilibrium which is globally asymptotically stable whenever \(\mathcal{R}_0\leq 1\). Local sensitivity analysis suggests that the disease can be controlled through reducing contact with infected dogs, increasing immunization of dogs, screening recruited dogs, culling of infected dogs, and use of dog meat as a delicacy.

MSC:

92D30 Epidemiology

References:

[1] Hayman, D. T. S.; Johnson, N.; Horton, D. L., Evolutionary history of rabies in Ghana, PLoS Neglected Tropical Diseases, 5, 4 (2011) · doi:10.1371/journal.pntd.0001001
[2] World Health Organization, Rabies Fact Sheet (2016), Geneva, Switzerland: World Health Organization, Geneva, Switzerland, http://www.who.int/mediacentre/fact-sheets/fs099/en/
[3] Rupprecht, C. E.; Briggs, D.; Brown, C. M.; Franka, R.; Katz, S. L.; Kerretal, H. D., Use of A Reduced (4-Dose) Vaccine Schedule for Postexposure Prophylaxis to Prevent Human Rabies: Recommendations of the Advisory Committee on Immunization Practices (2010), Atlanta, GA, USA: Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
[4] Addy, P. A. K.; Kuwert, E.; Merieux, C.; Koprowski, H.; Bogel, K., Epidemiology of rabies in Ghana, Rabies in the Tropics (1985), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/978-3-642-70060-6_65
[5] Asamoah, J. K. K.; Oduro, F. T.; Bonyah, E.; Seidu, B., Modelling of rabies transmission dynamics using optimal control analysis, Journal of Applied Mathematics, 2017 (2017) · Zbl 1437.92109 · doi:10.1155/2017/2451237
[6] Bornaa, C. S.; Makinde, O. D.; Sieni, I. Y., Eco-epidemiological model and optimal control of disease transmission between humans and animals, Communications in Mathematical Biology and Neuroscience, 2015, 26 (2015)
[7] Bornaa, C. S.; Sieni, I. Y.; Seidu, B., Modelling zoonotic diseases with treatment in both human and animal populations, Communications in Mathematical Biology and Neuroscience, 2017, 11 (2017) · doi:10.28919/cmbn/3236
[8] Joshi, H.; Lenhart, S.; Albright, K.; Gipson, K., Modeling the effect of information campaign on the HIV epidemic in Uganda, Mathematical Biosciences and Engineering, 5, 4, 757-770 (2008) · Zbl 1154.92037 · doi:10.3934/mbe.2008.5.757
[9] Gaff, H.; Schaefer, E., Optimal control applied to vaccination and treatment strategies for various epidemiological models, Mathematical Biosciences and Engineering, 6, 3, 469-492 (2009) · Zbl 1169.49018 · doi:10.3934/mbe.2009.6.469
[10] Kgosimore, M.; Lungu, E., The effects of vertical transmission on the spread of HIV/AIDS in the presence of treatment, Mathematical Biosciences and Engineering, 3, 2, 297-312 (2006) · Zbl 1103.37311 · doi:10.3934/mbe.2006.3.297
[11] Mukandavire, Z.; Garira, W., Sex-structured HIV/AIDS model to analyse the effects of condom use with application to Zimbabwe, Journal of Mathematical Biology, 54, 5, 669-699 (2007) · Zbl 1114.92060 · doi:10.1007/s00285-006-0063-5
[12] Hou, Q.; Jin, Z.; Ruan, S., Dynamics of rabies epidemics and the impact of control efforts in Guangdong Province, China, Journal of Theoretical Biology, 300, 39-47 (2012) · Zbl 1397.92638 · doi:10.1016/j.jtbi.2012.01.006
[13] Naresh, R.; Tripathi, A.; Omar, S., Modelling the spread of AIDS epidemic with vertical transmission, Applied Mathematics and Computation, 178, 2, 262-272 (2006) · Zbl 1096.92038 · doi:10.1016/j.amc.2005.11.041
[14] Granish, R.; Gilks, C.; Dye, C.; De Cock, K. M.; Williams, B. G., Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission:a mathematical model, The Lancet, 373, 9657, 48-57 (2008) · doi:10.1016/S0140-6736(08)61697-9
[15] Seidu, B.; Makinde, O. D.; Seini, I. Y., Mathematical analysis of the effects of HIV-malaria co-infection on workplace productivity, Acta Biotheoretica, 63, 2, 151-182 (2015) · doi:10.1007/s10441-015-9255-y
[16] Hsieh, Y.-H.; Sheu, S.-P., The effect of density-dependent treatment and behavior change on the dynamics of HIV transmission, Journal of Mathematical Biology, 43, 1, 69-80 (2001) · Zbl 0986.92029 · doi:10.1007/s002850100087
[17] Jin, Y.; Wang, W.; Xiao, S., An SIRS model with a nonlinear incidence rate, Chaos, Solitons & Fractals, 34, 5, 1482-1497 (2007) · Zbl 1152.34339 · doi:10.1016/j.chaos.2006.04.022
[18] Seidu, B.; Makinde, O. D., Optimal control of HIV/AIDS in the workplace in the presence of careless individuals, Computational and Mathematical Methods in Medicine, 2014 (2014) · Zbl 1307.92354 · doi:10.1155/2014/831506
[19] Wang, X.; Lou, J., Two dynamic models about rabies between dogs and human, Journal of Biological Systems, 16, 4, 519-529 (2008) · Zbl 1355.92132 · doi:10.1142/s0218339008002666
[20] Carroll, M. J.; Singer, A.; Smith, G. C.; Cowan, D. P.; Massei, G., The use of immunocontraception to improve rabies eradication in urban dog populations, Wildlife Research, 37, 8, 676-687 (2010) · doi:10.1071/wr10027
[21] Ding, W.; Gross, L. J.; Langston, K.; Lenhart, S.; Real, L. A., Rabies in raccoons: optimal control for a discrete time model on a spatial grid, Journal of Biological Dynamics, 1, 4, 379-393 (2007) · Zbl 1284.92101 · doi:10.1080/17513750701605515
[22] Diekmann, O.; Heesterbeek, J. A. P.; Roberts, M. G., The construction of next-generation matrices for compartmental epidemic models, Journal of The Royal Society Interface, 7, 47, 873-885 (2010) · doi:10.1098/rsif.2009.0386
[23] Castillo-Chavez, C.; Feng, Z. L.; Huang, W. Z., On the computation \(\operatorname{\mathcal{R}}_0\) and its role on global stability, IMA Journal of Applied Mathematics, 125, 229-250 (1992) · Zbl 1021.92032
[24] Marino, S.; Hogue, I. B.; Ray, C. J.; Kirschner, D. E., A methodology for performing global uncertainty and sensitivity analysis in systems biology, Journal of Theoretical Biology, 254, 1, 178-196 (2008) · Zbl 1400.92013 · doi:10.1016/j.jtbi.2008.04.011
[25] Castillo-Chavez, C.; Baojun, S., Dynamical models of tuberculosis and their applications, Mathematical Biosciences and Engineering, 1, 2, 361-404 (2004) · Zbl 1060.92041 · doi:10.3934/mbe.2004.1.361
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.