×

Dynamics in a plankton model with toxic substances and phytoplankton harvesting. (English) Zbl 1445.34079

Summary: In this paper, a phytoplankton-zooplankton model incorporating toxic substances and nonlinear phytoplankton harvesting is established. The existence and stability of the equilibrium of this model are first investigated. The occurrence of transcritical, saddle-node, Hopf and Bautin bifurcations at different equilibria is then verified. In addition, the properties of Hopf bifurcation and Bautin bifurcation are discussed by using normal form method. These results demonstrate that phytoplankton and zooplankton populations will oscillate periodically when the harvesting level is high. More interestingly, it is found that the oscillations are always unstable for small phytoplankton carrying capacity, while the dynamics have close relations with the initial population densities for a large environmental capacity. The existence of Bautin bifurcation theoretically indicates that toxic phytoplankton can cause extinction once there exist harmful algal blooms for some time. These results are numerically illustrated for the model with spatial diffusion, which shows that local phytoplankton blooms will lead to global populations extinction.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
92D40 Ecology
92D25 Population dynamics (general)
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34D05 Asymptotic properties of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Anderson, D. M. [1997] “ Turning back the harmful red tide,” Nature338, 513-514.
[2] Anderson, D. M., Burkholder, J. M. & Cochlan, W. P. [2008] “ Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States,” Harmful Algae8, 39-53.
[3] Anderson, D. M., Cembella, A. D. & Hallegraeff, G. M. [2012] “ Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management,” Ann. Rev. Mar. Sci.4, 143-176.
[4] Arheimer, B., Andreasson, J., Fogelberg, S., Johnsson, H., Pers, C. B. & Persson, K. [2005] “ Climate change impact on water quality: Model results from southern Sweden,” Ambio34, 559-566.
[5] Aziz-Alaoui, M. A. & Okiye, M. D. [2003] “ Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes,” Appl. Math. Lett.16, 1069-1075. · Zbl 1063.34044
[6] Beretta, E., Bischi, G. I. & Solimano, F. [1990] “ Stability in chemostat equations with delayed nutrient recycling,” J. Math. Biol.28, 99-111. · Zbl 0665.45006
[7] Boney, A. D. [1976] Phytoplankton (Arnold, London).
[8] Chattopadhyay, J., Sarkar, R. R. & Mandal, M. [2002a] “ Toxin producing plankton may act as a biological control for planktonic blooms-field study and mathematical modeling,” J. Theoret. Biol.215, 333-344.
[9] Chattopadhyay, J., Sarkar, R. R. & el Abdllaoui, A. [2002b] “ A delay differential equation model on harmful algal blooms in the presence of toxic substances,” IMA J. Math. Appl. Med. Biol.19, 137-161. · Zbl 1013.92046
[10] Du, Y. & Hsu, S. B. [2010] “ On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth,” SIAM J. Math. Anal.42, 1305-1333. · Zbl 1211.35261
[11] Duinker, J. & Wefer, G. [1994] “ Das \(\text{CO}_2\)-problem und die Rolle des Ozeans,” Naturwissenschaften81, 237-242.
[12] Dumortier, F., Roussarie, R., Sotomayor, J. & Żoladek, H. [1991] Bifurcations of Planar Vector Fields. Nilpotent Singularities and Abelian Integrals, , Vol. 1480 (Springer, Berlin, Heidelberg). · Zbl 0755.58002
[13] Edwards, A. M. & Brindley, J. [1999] “ Zooplankton mortality and the dynamical behavior of plankton population models,” Bull. Math. Biol.61, 303-339. · Zbl 1323.92162
[14] Falkowski, P. G. [1994] “ The role of phytoplankton photosynthesis in global biogeochemical cycles,” Photosynth. Res.39, 235-258.
[15] Guo, Y. & Niu, B. [2018] “ Bautin bifurcation in delayed reaction-diffusion systems with application to the Segel-Jackson model,” Discr. Contin. Dyn. Syst. Ser. B24, 6005-6024. · Zbl 1426.35023
[16] Gupta, R. P. & Chandra, P. [2012] “ Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting,” J. Math. Anal. Appl.398, 278-295. · Zbl 1259.34035
[17] Hallegraeff, G. M. [1993] “ A review of harmful algae blooms and the apparent global increase,” Phycologia32, 79-99.
[18] Han, R. & Dai, B. [2017] “ Cross-diffusion induced Turing instability and amplitude equation for a toxic-phytoplankton-zooplankton model with nonmonotonic functional response,” Int. J. Bifurcation and Chaos27, 1750088-1-24. · Zbl 1370.35256
[19] Heisler, J.et al. [2008] “ Eutrophication and harmful algal blooms: A scientific consensus,” Harmful Algae8, 3-13.
[20] Howarth, R. W., Billen, G. & Swaney, D. [1996] “ Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences,” Biogeochemistry35, 75-139.
[21] Hu, D. & Cao, H. [2017] “ Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting,” Nonlin. Anal.: Real World Appl.33, 58-82. · Zbl 1352.92125
[22] Huang, T., Bogstad, B. & Chierici, M. [2017] “ Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas: A review of possibilities and constraints,” Fish. Res.188, 38-57.
[23] Huntley, M. E., Sykes, P., Rohan, S. & Marin, V. H. [1986] “ Chemically-mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: Mechanism, occurrence and significance,” Mar. Ecol. Prog.28, 105-120.
[24] Jiang, Z., Ma, W. & Takeuchi, Y. [2017] “ Dynamics for phytoplankton-zooplankton system with time delays,” Funkcial. Ekvac.60, 279-304. · Zbl 1390.92110
[25] Jing, Z., Zhang, W., Zhang, J. & Zhang, T. [2018] “ Dynamical analysis of a phytoplankton-zooplankton system with harvesting term and Holling III functional response,” Int. J. Bifurcation and Chaos28, 1850162-1-23. · Zbl 1405.35225
[26] Kuznetsov, Y. A. [2004] Elements of Applied Bifurcation Theory (Springer-Verlag, NY). · Zbl 1082.37002
[27] Lee, K. H.et al. [2019] “ Effects of warming and eutrophication on coastal phytoplankton production,” Harmful Algae81, 106-118.
[28] Liu, S. & Wang, W. [2002] “ Feeding and reproductive responses of marine copepods in South China Sea to toxic and nontoxic phytoplankton,” Mar. Biol.140, 595-603.
[29] May, R. M., Beddington, J. R., Clark, C. W., Holt, J. S. & Laws, M. R. [1979] “ Management of multispecies fisheries,” Science205, 267-277.
[30] Meng, X., Lundström, N. L. P., Bodin, M. & Brännström, Ȧ. [2013] “ Dynamics and management of stage-structured fish stocks,” Bull. Math. Biol.75, 1-23. · Zbl 1402.92356
[31] Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E. & Thomas, O. [2013] “ State of knowledge and concerns on cyanobacterial blooms and cyanotoxins,” Environ. Int.59, 303-327.
[32] Murray, J. D. [1989] Mathematical Biology (Springer, Berlin) · Zbl 0682.92001
[33] Myerscough, M. R., Gray, B. F., Hogarth, W. L. & Norbury, J. [1992] “ An analysis of an ordinary differential equation model for a two-species predator-prey system with harvesting and stocking,” J. Math. Biol.30, 389-411. · Zbl 0749.92022
[34] Odum, E. P. [1971] Fundamentals of Ecology (Saunders, Philadelphia, PA).
[35] O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. [2012] “ The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change,” Harmful Algae14, 313-334.
[36] Paerl, H. W. & Paul, V. J. [2012] “ Climate change: Links to global expansion of harmful cyanobacteria,” Water Res.46, 1349-1363.
[37] Paerl, H. W. & Otten, T. G. [2013] “ Harmful cyanobacterial blooms: Causes, consequences, and controls,” Microb. Ecol.65, 995-1010.
[38] Pei, Y., Lv, Y. & Li, C. [2012] “ Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton system,” Appl. Math. Model.36, 1752-1765. · Zbl 1243.34072
[39] Roy, S., Alam, S. & Chattopadhyay, J. [2006] “ Competing effects of toxin-producing phytoplankton on overall plankton populations in the Bay of Bengal,” Bull. Math. Biol.68, 2303-2320. · Zbl 1296.92236
[40] Ruan, S. [1993] “ Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling,” J. Math. Biol.31, 633-654. · Zbl 0779.92021
[41] Shi, H., Ruan, S., Su, Y. & Zhang, J. [2015] “ Spatiotemporal dynamics of a diffusive Leslie-Gower predator-prey model with ratio-dependent functional response,” Int. J. Bifurcation and Chaos25, 1530014-1-16. · Zbl 1317.35268
[42] Smith, V. H. [2003] “ Eutrophication of freshwater and coastal marine ecosystems a global problem,” Environ. Sci. Pollut. Res.10, 126-139.
[43] Song, Y., Jiang, H., Liu, Q. & Yuan, Y. [2017] “ Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation,” SIAM J. Appl. Dyn. Syst.16, 2030-2062. · Zbl 1382.35035
[44] Verma, M. & Misra, A. K. [2018] “ Modeling the effect of prey refuge on a ratio-dependent predator-prey system with the Allee effect,” Bull. Math. Biol.80, 626-656. · Zbl 1388.34051
[45] Vinçon-Leite, B. & Casenave, C. [2019] “ Modelling eutrophication in lake ecosystems: A review,” Sci. Total Environ.651, 2985-3001.
[46] Wang, J., Shi, J. & Wei, J. [2011] “ Predator-prey system with strong Allee effect in prey,” J. Math. Biol.62, 291-331. · Zbl 1232.92076
[47] Wang, Y., Jiang, W. & Wang, H. [2013] “ Stability and global Hopf bifurcation in toxic phytoplankton-zooplankton model with delay and selective harvesting,” Nonlin. Dyn.73, 881-896. · Zbl 1281.92074
[48] Wang, J., Fu, Z., Qiao, H. & Liu, F. [2019] “ Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China,” Sci. Total Environ.650, 1392-1402.
[49] Wiggins, S. [1980] Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, NY). · Zbl 0701.58001
[50] Yang, X., Yang, M., Liu, H. & Liao, X. [2008] “ Bautin bifurcation in a class of two-neuron networks with resonant bilinear terms,” Chaos Solit. Fract.38, 575-589. · Zbl 1146.34315
[51] Yang, L., Peng, S., Zhao, X. & Li, X. [2017] “ Development of a two-dimensional eutrophication model in an urban lake (China) and the application of uncertainty analysis,” Ecol. Model.345, 63-74.
[52] Yuan, R., Jiang, W. & Wang, Y. [2017] “ Nonresonant double Hopf bifurcation in toxic phytoplankton-zooplankton model with delay,” Int. J. Bifurcation and Chaos27, 1750028-1-21. · Zbl 1362.34123
[53] Zhao, J. & Wei, J. [2015] “ Dynamics in a diffusive plankton system with delay and toxic substances effect,” Nonlin. Anal.: Real World Appl.22, 66-83. · Zbl 1307.35034
[54] Zhao, J., Tian, J. & Wei, J. [2016] “ Minimal model of plankton systems revisited with spatial diffusion and maturation delay,” Bull. Math. Biol.78, 381-412. · Zbl 1343.92556
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.