×

On the safe storage of Bagasse. (English) Zbl 1527.35418

Summary: In this paper, we investigate the thermal evolution in a one-dimensional bagasse stockpile. The mathematical model involves four unknowns: the temperature, oxygen content, liquid water content and water vapour content. We first nondimensionalize the model to identify dominant terms and so simplify the system. We then calculate solutions for the approximate and full system. It is shown that under certain conditions spontaneous combustion will occur. Most importantly, we show that spontaneous combustion can be avoided by sequential building. To be specific, in a situation where, say, a 4.7 m stockpile can spontaneously combust, we could construct a 3 m pile and then some days later add another 1.7 m to produce a stable 4.7 m pile.

MSC:

35Q79 PDEs in connection with classical thermodynamics and heat transfer
35K05 Heat equation
80A25 Combustion
80A17 Thermodynamics of continua
80A22 Stefan problems, phase changes, etc.
76T10 Liquid-gas two-phase flows, bubbly flows
Full Text: DOI

References:

[1] Amin, M. N., Ashraf, M., Kumar, R., Khan, K., Saqib, D., Ali, S. S. and Khan, S., “Role of sugarcane bagasse ash in developing sustainable engineered cementitious composites”, Front. Mater7 (2020) Article ID: 65; doi: doi:10.3389/fmats.2020.00065.
[2] Chumpoo, J. and Prasassarakich, P., “Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol”, Energy Fuels24 (2010) 2071-2077; doi: doi:10.1021/ef901241e.
[3] Dixon, T. F., “Spontaneous combustion in bagasse stockpiles”, Proc. Australian Society of Sugar Cane Technologists (Sugar Research Institute, Mackay, Queensland, Australia, 1988) 53-61; http://www.catchmentsolutions.com.au/files/2015/07/ASSCT-in-Bagasse-Spontaneous-Combustion-1988_pa_g9-Dixon.pdf.
[4] Fowler, A. C., Mathematical models in the applied sciences (Cambridge University Press, Cambridge, 1997).
[5] Gray, B. F., Progress report to Sugar Research Institute, July 1984.
[6] Gray, B. F., Griffiths, J. F. and Hasko, S. M., “Spontaneous ignition hazards in stockpiles of cellulosic materials: criteria for safe storage”, J. Chem. Tech. Biotech.34A (1984) 453-463; doi: doi:10.1002/jctb.5040340808.
[7] Gray, B. F., Sexton, M. J., Halliburton, B. and Macaskill, C., “Wetting-induced ignition in cellulosic materials”, Fire Safety J.37 (2002) 465-479; doi: doi:10.1016/S0379-7112(02)00002-4.
[8] Halliburton, B. W., “Investigation of spontaneous combustion phenomenology of bagasse and calcium hypochlorite”, Ph. D. Thesis, Macquarie University, Sydney, Australia, 2002; doi: doi:10.25949/19434962.v1.
[9] Juela, D., Vera, M., Cruzat, C., Alvarez, X. and Vanegas, E., “Adsorption properties of sugarcane bagasse and corn cob for the sulfamethoxazole removal in a fixed-bed column”, Sustainable Environ. Res.31 (2021) Article ID: 27; doi: doi:10.1186/s42834-021-00102-x.
[10] Luangwilai, T., Sidhu, H. S. and Nelson, M. I., “A two-dimensional, reaction-diffusion model of compost piles”, ANZIAM J.53 (2012) C34-C52; doi: doi:10.21914/anziamj.v53i0.5083.
[11] Luangwilai, T., Sidhu, H. S. and Nelson, M. I., “One-dimensional spatial model for self-heating in compost piles: investigating effects of moisture and air flow”, Food Bioproducts Process108 (2018) 18-26; doi: doi:10.1016/j.fbp.2017.12.001.
[12] Myers, T. G. and Mitchell, S. L., “Safe storage of sugar bagasse”. Mathematics in Industry Reports, Cambridge Open Engage, Cambridge, 2021; doi: doi:10.33774/miir-2021-zb61c.
[13] Nugent, C., “Why recycling plants keep catching on fire”, Time, April 13, 2023; https://time.com/6271576/recycling-plant-fire-indiana/.
[14] Patel, H., “Fixed-bed column adsorption study: a comprehensive review”, Appl. Water Sci.9 (2019) Article ID: 45; doi: doi:10.1007/s13201-019-0927-7.
[15] , The natural history (Books 12-37, 1885) ToposText Web Version 3.0. Translated by H. T. Riley (1816-1878) and J. Bostock (1773-1846); https://topostext.org/work/153.
[16] Ramirez, J., Brown, R. and Rainey, T., “A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels”, Energies8 (2015) Article ID: 6765; doi: doi:10.3390/en8076765.
[17] Schiesser, W. E., The numerical method of lines: integration of partial differential equations (Academic Press, San Diego, CA, 1991). · Zbl 0763.65076
[18] Sisson, R. A., Swift, A., Wake, G. C. and Gray, B. F., “The self-heating of damp cellulosic materials: I. High thermal conductivity and diffusivity”, IMA J. Appl. Math.49 (1992) 273-291; doi: doi:10.1093/imamat/49.3.273. · Zbl 0773.35032
[19] Van’T Hoff, J. H., Studies in chemical dynamics (F. Müller and Co., Amsterdam; Williams and Norgate, London, 1896) vi + 286 pages; translated by Dr. Thomas Ewan.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.