×

Effect of harvesting and infection on predator in a prey-predator system. (English) Zbl 1347.92066

Summary: In this article, we propose and analyze a mathematical model of a prey-predator system where infection spreads among the predators and predator is subject to harvesting. Dynamical behavior of the system is studied, and the consequences of harvesting on the long-run equilibrium fish biomass are evaluated. Optimal control theory has been used to determine the optimal harvesting policy for fish stocks to maximize the discounted utility of harvesting over time, employing a constant time discount rate. Some simulation works are given to verify our analytic results.

MSC:

92D25 Population dynamics (general)
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
Full Text: DOI

References:

[1] Bhattacharyya, S., Bhattacharya, D.K.: Pest control through viral disease: mathematical modeling and analysis. J. Theor. Biol. 238(1), 177-196 (2006) · Zbl 1445.92310 · doi:10.1016/j.jtbi.2005.05.019
[2] Chakraborty, K., Das, S., Kar, T.K.: Optimal control of effort of a stage structured prey-predator fishery model with harvesting. Nonlinear Anal. Real World Appl. 12, 3452-3467 (2011) · Zbl 1231.49017 · doi:10.1016/j.nonrwa.2011.06.007
[3] Clark, C.W.: Mathematical models in the economics of renewable resources. SIAM Rev. 21(1), 81-99 (1979) · Zbl 0401.90028 · doi:10.1137/1021006
[4] Clark, C.W.: Mathematical Bioeconomics: The Mathematics of Conservation. Wiley, New York (2010)
[5] Dai, G., Tang, M.: Coexistence region and global dynamics of a harvested predator-prey system. SIAM J. Appl. Math. 58, 193-210 (1998) · Zbl 0916.34034 · doi:10.1137/S0036139994275799
[6] Das, K., Chakraborty, M., Chakraborty, K., Kar, T.K.: Modelling and analysis of a multiple delayed exploited ecosystem towards coexistence perspective. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1457-3 · Zbl 1314.92125 · doi:10.1007/s11071-014-1457-3
[7] Gao, S.J., Chen, L.S., Teng, Z.D.: Hopf bifurcation and global stability for a delayed predator-prey system with stage structure for predator. Appl. Math. Comput. 202, 721-729 (2008) · Zbl 1151.34067 · doi:10.1016/j.amc.2008.03.011
[8] Ghosh, S., Bhattacharyya, S., Bhattacharya, D.K.: The role of viral infection in pest control: a mathematical study. Bull. Math. Biol. 69, 2649-2691 (2007) · Zbl 1245.92054 · doi:10.1007/s11538-007-9235-8
[9] Guckenheimer, G., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983) · Zbl 0515.34001 · doi:10.1007/978-1-4612-1140-2
[10] Hannesson, R.: Optimal harvesting of ecologically interdependent fish species. J. Environ. Econ. Manag. 10, 329-345 (1983) · doi:10.1016/0095-0696(83)90003-7
[11] Haque, M., Venturino, E.: Increase of the prey may decrease the healthy predator population in presence of a disease in the predator. HERMIS 7, 39-60 (2006) · Zbl 1260.92116
[12] Haque, M., Venturino, E.: An ecoepidemiological model with disease in the predator; the ratio-dependent case. Math. Methods Appl. Sci. 30, 1791-1809 (2007) · Zbl 1126.92050 · doi:10.1002/mma.869
[13] Haque, M., Rahaman, S., Venturino, E.: Comparing functional responses in predator-infected eco-epidemicsmodels. Biosystems 114(2), 98-117 (2013) · doi:10.1016/j.biosystems.2013.06.002
[14] Hsieh, Y., Hsiao, C.: Predator-prey model with disease infection in both populations. Math. Med. Biol. 25, 247-266 (2008) · Zbl 1154.92040 · doi:10.1093/imammb/dqn017
[15] Jana, S., Kar, T.K.: Modeling and analysis of a prey-predator system with disease in the prey. Chaos Solitons Fractals 47, 42-53 (2013) · Zbl 1258.92038 · doi:10.1016/j.chaos.2012.12.002
[16] Jana, S., Chakraborty, M., Chakraborty, K., Kar, T.K.: Global stability and bifurcation of time delayed prey-predator system incorporating prey refuge. Math. Comput. Simul. 85, 57-77 (2012) · Zbl 1258.34161 · doi:10.1016/j.matcom.2012.10.003
[17] Jana, S., Kar, T.K.: A mathematical study of a preypredator model in relevance to pest control. Nonlinear Dyn. 74, 667-674 (2013) · Zbl 1279.92086 · doi:10.1007/s11071-013-0996-3
[18] Kar, T.K.: Stability analysis of a prey-predator model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10(6), 681-691 (2005) · Zbl 1064.92045 · doi:10.1016/j.cnsns.2003.08.006
[19] Kar, T.K., Chaudhuri, K.S.: On non-selective harvesting of a multispecies fishery. Int. J. Math. Educ. Sci. Technol. 33(4), 543-556 (2002) · doi:10.1080/00207390210131533
[20] Kar, T.K., Chaudhuri, K.S.: On non-selective harvesting of two competing fish species in the presence of toxicity. Ecol. Model. 161, 125-137 (2003) · doi:10.1016/S0304-3800(02)00323-X
[21] Kar, T.K., Jana, S.: A theoretical study on mathematical modelling of an infectious disease with application of optimal control. Biosystems 111(1), 37-50 (2013) · doi:10.1016/j.biosystems.2012.10.003
[22] Kar, T.K., Mondal, P.K.: Global dynamics and bifurcation in delayed SIR epidemic model. Nonlinear Anal. Real World Appl. 12, 2058-2068 (2011) · Zbl 1235.34216 · doi:10.1016/j.nonrwa.2010.12.021
[23] Kar, T.K., Ghorai, A., Jana, S.: Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide. J. Theor. Biol. 310, 187-198 (2012) · Zbl 1337.92180 · doi:10.1016/j.jtbi.2012.06.032
[24] Kuang, Y., Takeuchi, Y.: Predator-prey dynamics in models of prey dispersal in two-patch environments. Math. Biosci. 120, 77-98 (1994) · Zbl 0793.92014 · doi:10.1016/0025-5564(94)90038-8
[25] Myerscough, M.R., Gray, B.F., Hogarth, W.L., Norbury, J.: An analysis of an ordinary differential equation model for a two-species predator-prey system with harvesting and stocking. J. Math. Biol. 30, 389-411 (1992) · Zbl 0749.92022 · doi:10.1007/BF00173294
[26] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962) · Zbl 0102.32001
[27] Ragozin, D.L., Brown, G.J.: Harvest policies and nonmarket valuation in a predator prey system. J. Environ. Econ. Manag. 12, 155-168 (1985) · doi:10.1016/0095-0696(85)90025-7
[28] Shi, X., Zhou, X., Song, X.: Dynamical behavior for an eco-epidemiological model with discrete and distributed delay. J. Appl. Math. Comput. 33, 305-325 (2010) · Zbl 1190.92044 · doi:10.1007/s12190-009-0288-8
[29] Song, X., Guo, H.: Global stability of a stage-structured predator-prey system. Int. J. Biomath. 1(3), 313-326 (2008) · Zbl 1173.34043 · doi:10.1142/S1793524508000266
[30] Venturino, E.: The influence of diseases on Lotka-Volterra systems. Rocky Mt. J. Math. 24, 381-402 (1994) · Zbl 0799.92017 · doi:10.1216/rmjm/1181072471
[31] Venturino, E.; Arino, O. (ed.); Axelrod, D. (ed.); Kimmel, M. (ed.); Langlais, M. (ed.), Epidemics in predator-prey models: disease among the prey, No. 1, 381-393 (1995), Winnipeg
[32] Venturino, E.: Epidemics in predator-prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185-205 (2002) · Zbl 1014.92036 · doi:10.1093/imammb/19.3.185
[33] Venturino, E.: On epidemics crossing the species barrier in interacting population models. Varahmihir J. Math. Sci. 6(1), 247-263 (2006) · Zbl 1138.92378
[34] Wang, X., Song, X.: Mathematical models for the control of a pest population by infected pest. Comput. Math. Appl. 56, 266-278 (2008) · Zbl 1145.92339 · doi:10.1016/j.camwa.2007.12.015
[35] Xiao, D., Ruan, S.: Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Inst. Commun. 21, 493-506 (1999) · Zbl 0917.34029
[36] Xu, R., Ma, Z.: Stability and Hopf bifurcation in a ratio-dependent predator prey system with stage-structure. Chaos Solitons Fractals 38, 669-684 (2008) · Zbl 1146.34323 · doi:10.1016/j.chaos.2007.01.019
[37] Yongzhen, P., Shuping, L., Changguo, L.: Effect of delay on a predatorprey model with parasitic infection. Nonlinear Dyn. 63, 311-321 (2011) · doi:10.1007/s11071-010-9805-4
[38] Zhang, Y., Zhang, Q., Zhang, X.: Dynamical behavior of a class of prey-predator system with impulsive state feedback control and Beddington-DeAngelis functional response. Nonlinear Dyn. 70, 1511-1522 (2012) · Zbl 1269.92074 · doi:10.1007/s11071-012-0551-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.