×

Dynamics analysis and optimality in selective harvesting predator-prey model with modified Leslie-Gower and Holling-type II. (English) Zbl 1416.37071

Summary: In this work, we consider the optimal harvesting and stability problems of a prey-predator model with modified Leslie-Gower and Holling-type II functional response. The model is governed by a system of three differential equations which describe the interactions between prey, predator and harvesting effort. Boundedness and existence of solutions for this system are showed. The existence and local stability of the possible steady states are analyzed and the conditions of global stability of the interior equilibrium are established by using the Lyapunov function, we prove also the occurrence of Hopf bifurcation at this point. By using the Pontryagin’s maximal principle, we formulate and we solve the problem of the optimal harvest policy. In the end, some numerical simulations are given to support our theoretical results.

MSC:

37N25 Dynamical systems in biology
92D25 Population dynamics (general)

References:

[1] C.W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewal Resources, Wiley, New York, 1976.; · Zbl 0364.90002
[2] M. Fan, K.Wang, Optimal harvesting policy for single population with periodic coefficients,Math. Biosci. 152 (1998) 165-177.; · Zbl 0940.92030
[3] H. Qiu, J. Lv, K. Wang, The optimal harvesting policy for non-autonomous populations with discount, Appl. Math. Lett. 26 (2013) 244-248.; · Zbl 1251.92045
[4] E. Braverman, R.Mamdani, Continuous versus pulse harvesting for population models in constant and variable environment, J. Math. Biol. 57 (2008)413-434.; · Zbl 1143.92327
[5] M.A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling type II shemes, Applied Math. Let., 16, (2003), 1069-1075.; · Zbl 1063.34044
[6] M. Daher Okiye, Study and asymptotic analysis of some nonLinear dynamical systems : Application to predator-prey problems, in french, PHD Thesis, Le Havre University, France, 2004.;
[7] M. A. Aziz-Alaoui, Study of a Leslie-Gower-type tritrophic population model, Chaos, Solitons and Fractals, 14 (8), (2002), 1275-1293.; · Zbl 1031.92027
[8] T.K. Kar, Modelling and analysis of a harvested prey-predator system incorporating a prey refuge, J. Comput. Appl. Math. 185 (2006) 19-33.; · Zbl 1071.92041
[9] D. Pal, G.S. Mahaptra, G.P. Samanta, Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model, Math.Biosci. 241 (2013) 181-187.; · Zbl 1402.92362
[10] J. Hale, Ordinary Differential Equations, Krieger Publ. Co., Malabar, 1980.; · Zbl 0433.34003
[11] Kalyan Das, M.N. Srinivas, M.A.S. Srinivas c, N.H. Gazi, d Chaotic dynamics of a three species prey-predator competition model with bionomic harvesting due to delayed environmental noise as external driving force C. R. Biologies 335 (2012) 503-513.;
[12] Manju Agarwal and Rachana Pathak, Persistence and optimal harvesting of prey-predator model with Holling Type III functional response, International Journal of Engineering, Science and Technology Vol. 4, No. 3, (2012) pp. 78-96.;
[13] Xiao D, Ruan S. Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Inst Commun (1999)21:493-506.; · Zbl 0917.34029
[14] Myerscough MR, Gray BF, Hogarth WL, Norbury J. An analysis of an ordinary differential equations model for a two species predator-prey system with harvesting and stocking. J Math Biol (1992) 30:389-411.; · Zbl 0749.92022
[15] Brauer F, Soudack AC. Stability regions and transition phenomena for harvested predator-prey systems. J Math Biol (1979) 7:319-37.; · Zbl 0397.92019
[16] M.I.S. Costa, E. Kaszkurewicz, A. Bhaya, L. Hsu, Achieving global convergence to an equilibriumpopulation in predator-prey systems by the use of a discontinuous harvesting policy, Ecol. Model. 128 (2000) 89.;
[17] Chen, FD: On a nonlinear non-autonomous predator-prey model with diffusion and distributed delay. J. Comput. Appl.Math. 180, 33-49 (2005).; · Zbl 1061.92058
[18] J. Rebaza, Dynamics of prey threshold harvesting and refuge, J. Comput. Appl. Math. 236 (2012) 1743.; · Zbl 1235.92048
[19] S. Sarwardi, M. Haque, P.K. Mandal, Ratio-dependent predator-prey model of interactin population with delay effect, Nonlinear Dyn. 69 (2012) 817-836.; · Zbl 1402.92367
[20] K. Chakraborty, S. Jana, T.K. Kar, Global dynamics and bifurcation in a stage structured prey-predator_shery model with harvesting, Appl. Math.Comput. 218 (2012) 9271-9290.; · Zbl 1246.92026
[21] D. L. Ragozin and G. Brown, “Harvest policies and nonmarket valuation in a predatorprey system”, J. Envirn. Econ. Manag. 12 (1985) 155-168.;
[22] L. S. Pontryagin, V. G. Boltyonskü, R. V. Gamkrelidre and E. F. Mishchenko, The mathematical theory of optimal processes, Wiley, New York, 1962.; · Zbl 0102.32001
[23] T. Das, R.N.Mukherjee, K.S. Chaudhuri, Harvesting of a prey-predator fishery in the presence of toxicity, Appl.Math. Model. 33 (2009) 2282.; · Zbl 1185.91120
[24] M. Liu, K. Wang, Analysis of a stochastic autonomous mutualism model, J. Math. Anal. Appl. 402 (2013) 392-403.; · Zbl 1417.92141
[25] J.R. Beddington, R.M. May, Harvesting natural populations in a randomly fluctuating environment, Science 197 (1977) 463-465.;
[26] W. Li, K. Wang, Optimal harvesting policy for general stochastic logistic population model, J. Math. Anal. Appl. 368 (2010) 420-428.; · Zbl 1187.92081
[27] A.R. Palma, E.G. Olivares, Optimal harvesting in a predator-prey model with Allee effect and sigmoid functional response, Appl. Math. Model. 5 (2012) 1864.; · Zbl 1243.49046
[28] C. Chen, C. Hsui, Fishery policy when considering the future opportunity of harvesting, Math. Biosci. 207 (2007) 138.; · Zbl 1114.92065
[29] Dubey, B.P. Chandra, et al. A model for fishery resourse with reserve area. Nonlinear Analysis : Real World Applications., 4(4) (2003). 625-637.; · Zbl 1011.92049
[30] K. R Fister and S. Lenhart, optimal harvesting in an age-structured predator-prey model, Appl. Math. Optim. 54 (2006) 1-15.; · Zbl 1102.49014
[31] Zhang X, chen L, Neumann UA (2000) The stage structured predator prey model and optimal harvesting policy. Math Biosci 168 : 201-210.; · Zbl 0961.92037
[32] Hsu, S.B. and Hwang T.W., Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55(3), (1995) 763-789.; · Zbl 0832.34035
[33] Hsu, S.B. and Hwang T.W., Uniqueness of limit cycles for a predator-prey system of Holling and Leslie type. Can. Appl.Math. Q., 6(2), 91-117, (1998).; · Zbl 0981.92036
[34] Daher, O. M. and Aziz-Alaoui, M. On the dynamics of a predator-prey model with the Holling-Tanner functional Editor V. Capasso, Proc. ESMTB conf, (2002) 270-278.;
[35] R. Ya_a, F. El Adnani and H. Talibi Limit cycle and numerical similations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type II scheme, Nonlinear Analysis: Real World Applications Vol.9, (2008) 2055-2067.; · Zbl 1156.34342
[36] R. Ya_a, F. El Adnani and H. Talibi, Stability of limit cycle in a predator-prey model with modified Leslie-Gower and Hollingtype II schemes with time delay. Applied Mathematical Sciences, Vol. 1, no. 3, (2007) pp 119 - 131.; · Zbl 1156.34067
[37] E. Beretta, Y. Kuang, Global analyses in some delayed ratio-depended predator-prey systems, Nonlinear Anal. Theory Methods Appl. 32 (3) (1998) 381-408.; · Zbl 0946.34061
[38] A.F. Nindjin, M.A. Aziz-Alaoui and M. Cadivel, Analysis of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes with Time Delay, Nonlinear Anal. Real World Appl., 7(5), (2006) 1104-1118. Theoretical Biology 245 (2007) 220-229.; · Zbl 1104.92065
[39] Sze-Bi Hsu and Tzy-Wei Hwang, Hopf bifurcation for a predator-prey system of Holling and Leslie type, Taywanese journal of Mathematics Vol. 3, No. 1, pp. 35-53, March 1999.; · Zbl 0935.34035
[40] S. Chakraborty, S. Pal, N. Bairagi, Predator-prey interaction with harvesting: mathematical study with biological ramifications, Applied Mathematical Modelling 36 (2012) 4044-4059.; · Zbl 1252.34038
[41] C.W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, second ed., John Wiley and Sons, New York, 1990.; · Zbl 0712.90018
[42] B. Roy and S. K. Roy, Analysis of prey-predator three species models with vertebral and invertebral predators, International Journal Dynamics and Control 3 (3), (2015) 306-312.;
[43] S. K. Roy and B. Roy, Analysis of prey-predator three species_shery model with harvesting including prey refuge and migration, International Journal of Bifurcation and Chaos 26 (02), (2016) 1650022.; · Zbl 1334.34105
[44] B. Roy, S. K. Roy and D. B. Gurung, Holling-Tanner model with Beddington-DeAngelis functional response and time delay introducing harvesting, Mathematics and Computers in Simulation 142 (2017) 1-14.; · Zbl 1540.92137
[45] B. Roy, S. K. Roy and M. H. A. Biswas, Effects on prey-predator with different functional response, International Journal of Biomathematics 10 (08), (2017) 1750113.; · Zbl 1376.92049
[46] Birkoff G. and Rota G.C., Ordinary Differential Equations. Ginn; (1982).;
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.