×

A linear view on shape optimization. (English) Zbl 1523.49050

The authors deal with numerical methods of the shape optimization. In order to make them efficient they linearize the problem using the deformations as representatives of shapes. They use the standard shape calculus and show the relation to standard vector space algorithms leading to a novel interpretation of shape Newton methods. A standard shape optimization algorithms applies the shape deformation \(T_t\) from the shape derivative in order to generate iterated shapes via \(\Omega^{k+1}=T_{t^k}^{V^k}(\Omega^k)\), where \(\{V^k\}\) are sufficiently smooth vector fields related to shape derivatives.
The main achievements are the analysis and the realization of standard descending shape optimization algorithms from the point of view of iterating over deformations rather than geometries.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
49M15 Newton-type methods
49M41 PDE constrained optimization (numerical aspects)

References:

[1] Afraites, L., Dambrine, M., and Kateb, D., On second order shape optimization methods for electrical impedance tomography, SIAM J. Control Optim., 47 (2008), pp. 1556-1590. · Zbl 1161.49038
[2] Allaire, G., Conception optimale de structures, Springer, New York, 2007. · Zbl 1132.49033
[3] Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N., The FEniCS project version 1.5, Arch. Numer. Softw., 3 (2015), doi:10.11588/ans.2015.100.20553.
[4] Arguillère, S., Trélat, E., Trouvé, A., and Younes, L., Shape deformation analysis from the optimal control viewpoint, J. Math. Pures Appl., 104 (2015), pp. 139-178. · Zbl 1319.49064
[5] Bängtsson, E., Noreland, D., and Berggren, M., Shape optimization of an acoustic horn, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 1533-1571. · Zbl 1175.76127
[6] Berggren, M., A unified discrete-continuous sensitivity analysis method for shape optimization, in Applied and Numerical Partial Differential Equations, , Springer, Cham, 2010, pp. 25-39, · Zbl 1186.65078
[7] Borzì, A. and Schulz, V., Computational Optimization of Systems Governed by Partial Differential Equations, SIAM, Philadelphia, 2012. · Zbl 1240.90001
[8] Brown, P. N. and Walker, H. F., GMRES on (nearly) singular systems, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 37-51. · Zbl 0876.65019
[9] Delfour, M. and Zolésio, J.-P., Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, , 2nd ed., SIAM, Philadelphia, 2011. · Zbl 1251.49001
[10] Delfour, M. C. and Zolésio, J.-P., Shapes and Geometries: Analysis, Differential Calculus, and Optimization, , SIAM, Philadelphia, 2001. · Zbl 1002.49029
[11] Deuflhard, P., Newton Methods for Nonlinear Problems, Affine Invariance and Adaptive Algorithms, , Springer, Berlin, 2004. · Zbl 1056.65051
[12] Deuflhard, P. and Heindl, G., Affine invariant convergence theorems for Newton’s method and extensions to related methods, SIAM J. Numer. Anal., 16 (1979), pp. 1-10. · Zbl 0395.65028
[13] Eppler, K. and Harbrecht, H., A regularized Newton method in electrical impedance tomography using shape Hessian information, Control. Cybernet., 34 (2005), pp. 203-225. · Zbl 1167.49327
[14] Eppler, K. and Harbrecht, H., Shape optimization for free boundary problems – analysis and numerics, in Constrained Optimization and Optimal Control for Partial Differential Equations, , Leugering, G., Engell, S., Griewank, A., Hinze, M., Rannacher, R., Schulz, V., Ulbrich, M., and Ulbrich, S., eds., Birkhäuser, Basel, 2012, pp. 277-288. · Zbl 1356.49073
[15] Eppler, K., Harbrecht, H., and Schneider, R., On convergence in elliptic shape optimization, SIAM J. Control. Optim., 46 (2007), pp. 61-83. · Zbl 1354.49093
[16] Eppler, K., Schmidt, S., Schulz, V., and Gauger, N., Preconditioning the pressure tracking in fluid dynamics by shape Hessian information, J. Optim. Theory Appl., 141 (2009), pp. 513-531. · Zbl 1178.49054
[17] Gherman, I., Approximate Partially Reduced SQP Approaches for Aerodynamic Shape Optimization Problems, Ph.D. thesis, University of Trier, 2007.
[18] Gong, W. and Zhu, S., On discrete shape gradients of boundary type for PDE-constrained shape optimization, SIAM J. Numer. Anal., 59 (2021), pp. 1510-1541. · Zbl 1466.49035
[19] Groetsch, C., Generalized Inverses of Linear Operators, Marcel Dekker, New York, 1977. · Zbl 0358.47001
[20] Haslinger, J. and Mäkinen, R., Introduction to Shape Optimization: Theory, Approximation, and Computation, , SIAM, Philadelphia, 2003. · Zbl 1020.74001
[21] Hayami, K., Convergence of the Conjugate Gradient Method on Singular Systems, , National Institute of Informatics, Tokyo, 2018.
[22] Hintermüller, M., Fast level set based algorithms using shape and topological sensitivity information, Control Cybernet., 34 (2005), pp. 305-324. · Zbl 1167.49317
[23] Hiptmair, R., Paganini, A., and Sargheini, S., Comparison of approximate shape gradients, BIT, 55 (2015), pp. 459-485. · Zbl 1320.65099
[24] Jameson, A., Aerodynamic design via control theory, J. Sci. Comput., 3 (1988), pp. 233-260. · Zbl 0676.76055
[25] Laumen, M., Newton’s method for a class of optimal shape design problems, SIAM J. Optim., 10 (1996), pp. 503-533. · Zbl 0956.65053
[26] Luft, D. and Schulz, V., Pre-shape calculus: Foundations and application to mesh quality optimization, Control Cybernet., 50 (2021), pp. 263-301. · Zbl 1495.49028
[27] Luft, D. and Schulz, V., Simultaneous shape and mesh quality optimization using pre-shape calculus, Control Cybernet., 50 (2021), pp. 473-520. · Zbl 1496.49021
[28] Micheletti, A., Metrica per famiglie di domini limitati e proprietá generiche degli autovalori, Ann. Sc. Norm. Super. Pisa, 26 (1972), pp. 683-694. · Zbl 0255.35028
[29] Mohammadi, B. and Pironneau, O., Applied Shape Optimization for Fluids, , Clarendon Press, Oxford, 2001. · Zbl 0970.76003
[30] Murat, F. and Simon, J., Etudes de problems d’optimal design, in Optimization Techniques Modeling and Optimization in the Service of Man Part 2, , Springer, New York, 1976, pp. 54-62.
[31] Nocedal, J. and Wright, S., Numerical Optimization, Springer, New York, 2006. · Zbl 1104.65059
[32] Novruzi, A. and Pierre, M., Structure of shape derivatives, J. Evol. Equ., 2 (2002), pp. 365-382. · Zbl 1357.49150
[33] Choi, S.-C. T., Paige, C. C., and Saunders, M. A., MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems, SIAM J. Sci. Comput., 33 (2011), pp. 1810-1836. · Zbl 1230.65050
[34] Schmidt, S., Gräßer, M., and Schmid, H.-J., A Shape Newton Scheme for Deforming Shells with Application to Capillary Bridges, https://arxiv.org/abs/2012.15016, 2020. · Zbl 1496.49016
[35] Schmidt, S., Gräßer, M., and Schmid, H.-J., A shape Newton scheme for deforming shells with application to capillary bridges, SIAM J. Sci. Comput., 44 (2022), pp. B1175-B1194, doi:10.1137/20M1389054. · Zbl 1496.49016
[36] Schmidt, S., Ilic, C., Schulz, V., and Gauger, N., Three-dimensional large-scale aerodynamic shape optimization based on shape calculus, AIAA J., 51 (2013), pp. 2615-2627.
[37] Schulz, V., A Riemannian view on shape optimization, Found. Comput. Math., 14 (2014), pp. 483-501. · Zbl 1296.49037
[38] Schulz, V. and Gherman, I., One-shot methods for aerodynamic shape optimization, in MEGADESIGN and MegaOpt - German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design, , Kroll, N., Schwamborn, D., Becker, K., Rieger, H., and Thiele, F., eds., Springer, New York, 2009, pp. 207-220.
[39] Sokolowski, J., Displacement Derivatives in Shape Optimization of Thin Shells, Research Report RR-2995, INRIA, 1996, https://hal.inria.fr/inria-00073702. · Zbl 0894.49025
[40] Sokolowski, J. and Zolesio, J., Introduction to Shape Optimization: Shape Sensitivity Analysis, , Springer, Berlin, 2012, https://books.google.de/books?id=bkruCAAAQBAJ. · Zbl 0761.73003
[41] Sokolowski, J. and Zolésio, J.-P., Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer, Berlin, 1992. · Zbl 0761.73003
[42] Sturm, K., Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption, SIAM J. Control. Optim., 53 (2015), pp. 2017-2039. · Zbl 1327.49073
[43] Sturm, K., Convergence of Newton’s Method in Shape Optimisation via Approximate Normal Functions, https://arxiv.org/abs/1608.02699, 2018.
[44] Welker, K., Suitable spaces for shape optimization, Appl. Math. Optim., 84 (2021), pp. S869-S902, doi:10.1007/s00245-021-09788-2. · Zbl 1477.49062
[45] Younes, L., Shapes and Diffeomorphisms, , 2nd ed., Springer, Berlin, 2019. · Zbl 1423.53002
[46] Zhu, S., Effective shape optimization of laplace eigenvalue problems using domain expressions of eulerian derivatives, J. Optim. Theory Appl., 176 (2018), pp. 17-34. · Zbl 1453.65400
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.