×

Stability of the tangent bundle through conifold transitions. (English) Zbl 1536.81005

Summary: Let \(X\) be a compact, Kähler, Calabi-Yau threefold and suppose \(X\mapsto \underline{X}\leadsto X_t\), for \(t\in \Delta\), is a conifold transition obtained by contracting finitely many disjoint \((-1,-1)\) curves in \(X\) and then smoothing the resulting ordinary double point singularities. We show that, for \(|t|\ll 1\) sufficiently small, the tangent bundle \(T^{1,0}X_t\) admits a Hermitian-Yang-Mills metric \(H_t\) with respect to the conformally balanced metrics constructed by Fu-Li-Yau. Furthermore, we describe the behavior of \(H_t\) near the vanishing cycles of \(X_t\) as \(t\rightarrow 0\).
© 2023 Wiley Periodicals LLC.

MSC:

81P05 General and philosophical questions in quantum theory
60J35 Transition functions, generators and resolvents
14H15 Families, moduli of curves (analytic)
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
58A30 Vector distributions (subbundles of the tangent bundles)
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
53C18 Conformal structures on manifolds
53C38 Calibrations and calibrated geometries

References:

[1] B.Andreas and M.Garcia‐Fernandez, Solutions of the Strominger system via stable bundles on Calabi‐Yau threefolds, Comm. Math. Phys.315 (2012), no. 1, 153-168. · Zbl 1252.32031
[2] B.Andreas and M.Garcia‐Fernandez, Heterotic non‐Kähler geometries via polystable bundles on Calabi‐Yau threefolds, J. Geom. Phys.62 (2012), no. 2, 183-188. · Zbl 1243.14030
[3] S.Bando and Y.‐T.Siu, Stable sheaves and Einstein‐Hermitian metrics, Geometry and Analysis on Complex Manifolds, World Scientific Publishing, River Edge, NJ, 1994, pp. 39-50. · Zbl 0880.32004
[4] L.Bedulli and L.Vezzoni, On the stability of the anomaly flow, Math. Res. Lett.23 (2022), no. 2, 323-338. · Zbl 1507.14058
[5] Y.Bozhkov, Specific complex geometry of certain complex surfaces and three‐folds, PhD thesis, University of Warwick, England, 1992.
[6] E.Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jorgens, Michigan Math. J.5 (1958), 105-126. · Zbl 0113.30104
[7] P.Candelas, P.Green, and T.Hübsch, Finite distance between distinct Calabi‐Yau manifolds, Phys. Rev. Lett.62 (1989), no. 17, 1956-1959.
[8] P.Candelas, P.Green, and T.Hübsch, Rolling among Calabi‐Yau vacua, Nuclear Phys. B330 (1990), no. 1, 49-102. · Zbl 0985.32502
[9] P.Candelas, G.Horowitz, A.Strominger, and E.Witten, Vacuum configurations for superstrings, Nuclear Phys. B258 (1985), no. 1, 46-74.
[10] P.Candelas and X.de laOssa, Comments on conifolds, Nuclear Phys. B342 (1990), no. 1, 246-268.
[11] Y.Chan, Desingularizations of Calabi‐Yau 3‐folds with conical singularities. II. The obstructed case, Q. J. Math.60 (2009), no. 1, 1-44. · Zbl 1158.14302
[12] X.Chen and S.Sun, Algebraic tangent cones of reflexive sheaves, Int. Math. Res. Not. (2020), no. 24, 10042-10063. · Zbl 1467.14046
[13] X.Chen and S.Sun, Analytic tangent cones of admissible Hermitian‐Yang‐Mills connections, Geometry Topology25 (2021), no. 4, 2061-2108. · Zbl 1481.53031
[14] X.Chen and S.Sun, Singularities of Hermitian‐Yang‐Mills connections and Harder‐Narasimhan‐Seshadri filtrations, Duke Math. J.169 (2020), no. 14, 2629-2695. · Zbl 1457.14079
[15] X.Chen and S.Sun, Reflexive sheaves, Hermitian‐Yang‐Mills connections, and tangent cones, Invent. Math.225 (2021), 73-129. · Zbl 1471.32031
[16] M.‐T.Chuan, Existence of Hermitian‐Yang‐Mills metrics under conifold transitions, Comm. Anal. Geom.20 (2012), no. 4, 677-749. · Zbl 1266.53028
[17] J.Chu, L.Huang, and X.Zhu, The Fu‐Yau equation in higher dimensions, Peking Math. J.2 (2019), no. 1, 71-97. · Zbl 1416.58010
[18] R.Conlon and H.Hein, Asymptotically conical Calabi‐Yau manifolds, I, Duke Math. J.162 (2013), no. 15, 2855-2902. · Zbl 1283.53045
[19] X.De la Ossa and E.Svanes, Holomorphic bundles and the moduli spaces of N=1 supersymmetric heterotic compactifications, J. High Energy Phys.10 (2014), 123. https://doi.org/10.1007/JHEP10(2014)123 · Zbl 1333.81413 · doi:10.1007/JHEP10(2014)123
[20] J.Demailly, Complex Analytic and Differential Geometry, Universite de Grenoble I, 2012. https://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf
[21] S.Donaldson, Anti self‐dual Yang‐Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc.50 (1985), no. 3, 1-26. · Zbl 0529.53018
[22] T.Fei, A construction of non‐Kähler Calabi‐Yau manifolds and new solutions to the Strominger system, Adv. Math.302 (2016), 529-550. · Zbl 1350.32026
[23] T.Fei, Some torsional local models for heterotic strings, Comm. Anal. Geom.25 (2017), no. 5, 941-968. · Zbl 1383.32007
[24] T.Fei, Z.Huang, and S.Picard, A construction of infinitely many solutions to the Strominger system, J. Differential Geometry117 (2021), no. 1, 23-39. · Zbl 1456.81334
[25] T.Fei and D. H.Phong, Unification of the Kähler‐Ricci and anomaly flows, Differential Geometry, Calabi‐Yau Theory, and General Relativity, Surveys in Differential Geometry, 22, International Press, 2018, pp. 89-104.
[26] T.Fei, D. H.Phong, S.Picard, and X. W.Zhang, Estimates for a geometric flow for the Type IIB string, Math. Ann.382 (2022), 1935-1955. · Zbl 1504.32048
[27] T.Fei and S.‐T.Yau, Invariant solutions to the Strominger system on complex Lie groups and their quotients, Comm. Math. Phys.338 (2015), no. 3, 1183-1195. · Zbl 1319.32022
[28] M.Fernandez, S.Ivanov, L.Ugarte, and D.Vassilev, Non‐Kaehler heterotic string solutions with non‐zero fluxes and non‐constant dilaton, J. High Energy Phys.2014, no. 6, 073. https://doi.org/10.1007/JHEP06(2014)073 · Zbl 1333.81330 · doi:10.1007/JHEP06(2014)073
[29] M.Fernandez, S.Ivanov, L.Ugarte, and R.Villacampa, Non‐Kaehler heterotic string compactifications with non‐zero fluxes and constant dilaton, Comm. Math. Phys.288 (2009), no. 2, 677-697. · Zbl 1197.83103
[30] A.Fino, G.Grantcharov, and L.Vezzoni, Solutions to the Hull‐Strominger system with torus symmetry, Commun. Math. Phys388 (2021), 947-967. · Zbl 1485.53042
[31] R.Friedman, Simultaneous resolution of threefold double points, Math. Ann.274 (1986), no. 4, 671-689. · Zbl 0576.14013
[32] R.Friedman, On threefolds with trivial canonical bundle, Complex geometry and Lie theory (Sundance, UT, 1989), Proceedings of Symposia in Pure Mathematics, vol. 53, American Mathematical Society, Providence, RI, 1991, pp. 103-134. · Zbl 0753.14035
[33] R.Friedman, The \(\partial \bar{\partial } \)‐lemma for general Clemens manifolds, Pure Appl. Math. Q.15 (2019), no. 4, 1001-1028. · Zbl 1439.32037
[34] J.Fu and S. T.Yau, The theory of superstring with flux on non‐Kähler manifolds and the complex Monge‐Ampère equation, J. Differential Geom.78 (2008), no. 3, 369-428. · Zbl 1141.53036
[35] J.Fu, J.Li, and S. T.Yau, Balanced metrics on non‐Kähler Calabi‐Yau threefolds, J. Differential Geom.90 (2012), 81-129. · Zbl 1264.32020
[36] J.Fu, L.Tseng, and S. T.Yau, Local heterotic torsional models, Comm. Math. Phys.289 (2009), no. 3, 1151-1169. · Zbl 1167.83309
[37] M.Garcia‐Fernandez, Lectures on the Strominger system, Trav. Math.24 (2016), 7-61. · Zbl 1379.35265
[38] M.Garcia‐Fernandez, T‐dual solutions of the Hull‐Strominger system on non‐Kahler threefolds, J. Reine Angew.766 (2020), 137-150. · Zbl 1447.58033
[39] M.Garcia‐Fernandez, R.Rubio, and C.Tipler, Gauge theory for string algebroids, Preprint 2020. https://arxiv.org/abs/2004.11399
[40] M.Garcia‐Fernandez, R.Rubio, C.Shahbazi, and C.Tipler, Canonical metrics on holomorphic Courant algebroids, Proc. London Math. Soc125 (2022), no. 3, 700-758. · Zbl 1523.32043
[41] H.Grauert, Uber Modifikationen und exzeptionelle analytische Mengen, Math. Ann.146 (1962), 331-368. · Zbl 0173.33004
[42] P.Green and T.Hübsch, Possible phase transitions among Calabi‐Yau compactifications, Phys Rev. Lett.61 (1988), no. 10, 1163-1166.
[43] P.Green and T.Hübsch, Connecting moduli spaces of Calabi‐Yau threefolds, Comm. Math. Phys.119 (1988), no. 3, 431-441. · Zbl 0684.53077
[44] B.Greene, D.Morrison, and A.Strominger, Black hole condensation and the unification of string vacua, Nuclear Phys. B451 (1995), no. 1‐2, 109-120. · Zbl 0908.53041
[45] P.Lu and G.Tian, Complex structures on connected sums of S3 x S3, Manifolds and geometry, Sympos. Math., XXXVI, Cambridge University Press, Cambridge, 1996, pp. 284-293. · Zbl 0854.32016
[46] Q.Han and F.Lin, Elliptic Partial Differential Equations, vol. 1. American Mathematical Society, 2011. · Zbl 1210.35031
[47] H.Hein and S.Sun, Calabi‐Yau manifolds with isolated conical singularities, Publ. mathematiques l’IHES126 (2017), no. 1, 73-130. · Zbl 1397.32009
[48] L.Huang, The adiabatic limit of Fu‐Yau equations, Acta. Math. Sin.38 (2022), 1255-1270. · Zbl 1494.58008
[49] C.Hull, Compactifications of the heterotic superstring, Phys. Lett. B1978 (1986), no. 4, 357-364.
[50] A.Jacob and T.Walpuski, Hermitian‐Yang‐Mills metrics on reflexive sheaves over asymptotically cylindrical Kähler manifolds, Comm. Partial. Differ. Equ.43 (2018), no. 11, 1566-1598 · Zbl 1516.53029
[51] A.Jacob, H.Sá Earp, and T.Walpuski, Tangent cones of Hemitian Yang‐Mills connections with isolated singularities, Math. Res. Lett.25 (2018), no. 5, 1429-1445. · Zbl 1505.53034
[52] D.Joyce, Special Lagrangian submanifolds with isolated conical singularities. V. Survey and applications, J. Differ. Geom.63 (2003), no. 2, 279-347. · Zbl 1076.53064
[53] S.Karigiannis, Desingularization of G2 manifolds with isolated conical singularities, Geometry Topology13 (2009), 1583-1655. · Zbl 1161.53348
[54] A.Kas and M.Schlessinger, On the versal deformation of a complex space with an isolated singularity, Math. Ann.196 (1972), 23-29. · Zbl 0242.32014
[55] Y.Kawamata, Unobstructed deformations. A remark on a paper of Z. Ran: “Deformations of manifolds with torsion of negative canonical bundle”, J. Algebraic Geom.1 (1992), no. 2, 183-190. · Zbl 0818.14004
[56] E.Levi, Studii sur punti singolari essenziali dell funzioni analitiche di due o piu variabli complesse, Annali di Mat. Pura ed. Appl.17 (1910), no. 3, 61-87. · JFM 41.0487.01
[57] J.Li and S. T.Yau, Hermitian‐Yang‐Mills connections on non‐Kahler manifolds, Mathematical Aspects of String Theory, Advanced Series in Mathematical Physics, World Scientific Publishing (1986), pp. 560-573. · Zbl 0664.53011
[58] J.Li and S. T.Yau, The existence of supersymmetric string theory with torsion, J. Differential Geom.70 (2005), no. 1, 143-181. · Zbl 1102.53052
[59] M.Michelsohn, On the existence of special metrics in complex geometry, Acta Math.149 (1982), 261-295. · Zbl 0531.53053
[60] A.Otal, L.Ugarte, and R.Villacampa, Invariant solutions to the Strominger system and the heterotic equations of motion on solvmanifolds, Nuclear Phys. B920 (2017), 442-474. · Zbl 1364.81208
[61] T.Pacini, Desingularizing isolated conical singularities, Comm. Anal. Geom.21 (2013), 105-170. · Zbl 1284.46031
[62] D. H.Phong, Geometric partial differential equations from unified string theories, Preprint 2019. https://arxiv.org/abs/1906.03693
[63] D. H.Phong, S.Picard, and X. W.Zhang, A second order estimate for general complex Hessian equations, Anal. PDE9 (2016), no. 7, 1693-1709. · Zbl 1353.32024
[64] D. H.Phong, S.Picard, and X. W.Zhang, The Fu‐Yau equation with negative slope parameter, Invent. Math.209 (2017), no. 2, 541-576. · Zbl 1378.58017
[65] D. H.Phong, S.Picard, and X. W.Zhang, The anomaly flow and the Fu‐Yau equation, Ann. PDE4 (2018), no. 13. · Zbl 1410.81030
[66] D. H.Phong, S.Picard, and X. W.Zhang, Geometric flows and Strominger systems, Math. Z.288 (2018), 101-113. · Zbl 1407.32011
[67] D. H.Phong, S.Picard, and X. W.Zhang, Anomaly flows, Comm. Anal. Geom.26 (2018), no. 4, 955-1008. · Zbl 1400.32012
[68] D. H.Phong, S.Picard, and X. W.Zhang, A flow of conformally balanced metrics with Kähler fixed points, Math. Ann.374 (2019), no. 3, 2005-2040. · Zbl 1433.53100
[69] D. H.Phong, S.Picard, and X. W.Zhang, On estimates for the Fu‐Yau generalization of a Strominger system, J. Reine Angew. Math.751 (2019), 243-274. · Zbl 1417.58014
[70] D. H.Phong, S.Picard, and X. W.Zhang, Fu‐Yau Hessian equations, J. Differential Geom.118 (2021), no. 1, 147-187. · Zbl 1473.58015
[71] D. H.Phong, N.Sesum, and J.Sturm, Multiplier ideal sheaves and the Kahler‐Ricci flow, Comm. Anal. Geom.15 (2007), no. 3, 613-632. · Zbl 1143.53064
[72] D.Popovici, A simple proof of a theorem by Uhlenbeck and Yau, Math. Z.250 (2005), no. 4, 855-872. · Zbl 1083.32018
[73] Z.Ran, Deformations of manifolds with torsion or negative canonical bundle, J. Algebraic Geom.1 (1992), no. 2, 279-291. · Zbl 0818.14003
[74] M.Reid, The moduli space of 3‐folds with \(K=0\) may nevertheless be irreducible, Math. Ann.278 (1987), no. 1‐4, 329-334. · Zbl 0649.14021
[75] M.Rossi, Geometric transitions, J. Geom. Phys.5 (2006), no. 9, 1940-1983. · Zbl 1106.32019
[76] X. C.Rong and Y. G.Zhang, Continuity of extremal transitions and flops for Calabi‐Yau manifolds, J. Differential Geom.89 (2011), 233-269. · Zbl 1264.32021
[77] M.Sherman and B.Weinkove, Interior derivative estimates for the Kahler‐Ricci flow, Pacific J. Math.257 (2012), no. 2, 491-501. · Zbl 1262.53056
[78] J.Song, On a conjecture of Candelas and de la Ossa, Comm. Math. Phys.334 (2015), 697-717. · Zbl 1318.32028
[79] C.Spotti, Deformations of nodal Kähler‐Einstein del Pezzo surfaces with discrete automorphism groups, J. Lond. Math. Soc.89 (2014), no. 2, 539-558. · Zbl 1296.53142
[80] M.Stenzel, Ricci‐flat metrics on the complexification of a compact rank one symmetric space, Manuscripta Math.80 (1993), no. 2, 151-163. · Zbl 0811.53049
[81] A.Strominger, Superstrings with torsion, Nuclear Phys. B274 (1986), no. 2, 253-284.
[82] A.Strominger, Massless black holes and conifolds in string theory, Nuclear Phys. B451 (1995), no. 1‐2, 96-108. · Zbl 0925.83071
[83] Y. T.Siu, Lectures on Hermitian‐Einstein Metrics for Stable Bundles and Kähler‐Einstein Metrics, DMV Seminar, vol. 8, Birkhäuser Verlag, Basel, 1987. · Zbl 0631.53004
[84] G.Székelyhidi, An Introduction to Extremal Kahler Metrics, vol. 152, American Mathematical Society, 2014. · Zbl 1298.53002
[85] C.Taubes, Self‐dual Yang‐Mills connections on non‐self‐dual 4‐manifolds, J. Differential Geom.17 (1982), no. 1, 139-170. · Zbl 0484.53026
[86] G.Tian, On stability of the tangent bundles of Fano varieties, Int. J. Math.3 (1992), no. 3, 401-413. · Zbl 0779.53009
[87] G.Tian, Smooth 3‐folds with trivial canonical bundle and ordinary double points, Essays on Mirror Manifolds, International Press, Hong Kong, 1992, pp. 458-479. · Zbl 0829.32012
[88] V.Tosatti, Limits of Calabi‐Yau metrics when the Kähler class degenerates, J. Eur. Math. Soc.11 (2009), no. 4, 755-776. · Zbl 1177.32015
[89] V.Tosatti, Adiabatic limits of Ricci‐flat Kahler metrics, J. Differential Geom.84 (2010), no. 2, 427-453 · Zbl 1208.32024
[90] L. S.Tseng and S. T.Yau, Non‐Kaehler Calabi‐Yau manifolds, Strings Math 2011, Proceedings of Symposia in Pure Mathematics, 85, American Mathematical Society, Providence, RI, 2012, pp. 241-254. · Zbl 1253.00016
[91] K.Uhlenbeck and S. T.Yau, On the existence of Hermitian‐Yang‐Mills connections in stable vector bundles, Comm. Pure Appl. Math.39‐S (1986), 257-293; 42 (1989), 703-707. · Zbl 0615.58045
[92] B.Yang, The uniqueness of tangent cones for Yang‐Mills connections with isolated singularities, Adv. Math.180 (2003), no. 2, 648-691. · Zbl 1049.53021
[93] S. T.Yau, Metrics on complex manifolds, Sci. China Math.53 (2010), no. 3, 565-572. · Zbl 1193.53151
[94] S. T.Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge‐Ampère equation, I, Comm. Pure Appl. Math.31 (1978), 339-411. · Zbl 0369.53059
[95] S. T.Yau, A splitting theorem and an algebraic geometric characterization of locally hermitian symmetric spaces, Comm. Anal. Geom.1 (1993), no. 3, 473-486. · Zbl 0842.53035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.