×

On piecewise linear differential systems with \(n\) limit cycles of arbitrary multiplicities in two zones. (English) Zbl 1418.34035

Summary: In this paper, we demonstrate rich dynamical phenomenon of piecewise linear differential systems having only two zones in the plane. We show that, for any given integer \(n\) and any integer tuple \(m=(m_1,m_2,\dots , m_n)\), \( m_i \ge 0 \), for \(i=1,\dots ,n\), there exists an aforementioned system which possesses exactly \(n\) limit cycles having multiplicities \(m_1\), \(m_2,\dots , m_n\), respectively. (i.e. there are totally \(m_1+m_2+\cdots +m_n\) limit cycles taking into account of multiplicities). Moreover, we can even choose the separation boundary of the zones to be an algebraic curve.

MSC:

34A36 Discontinuous ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
Full Text: DOI

References:

[1] Andronov, A., Vitt, A., Khaikin, S.: Theory of Oscillators. Pergamon Press, Oxford (1966) · Zbl 0188.56304
[2] Braga, D.C., Mello, L.F.: Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane. Nonlinear Dyn. 73, 1283-1288 (2013) · Zbl 1281.34037 · doi:10.1007/s11071-013-0862-3
[3] Braga, D.C., Mello, L.F.: More than three limit cycles in discontinuous piecewise linear differential systems with two zones in the plane. Int. J. Bifur. Chaos Appl. Sci. Eng. 24, 1450056 (2014) · Zbl 1296.34055 · doi:10.1142/S0218127414500564
[4] Buzzi, C.A., Carvalho, T.D., Teixeira, M.A.: Birth of limit cycles bifurcating from a nonsmooth center. J. Math. Pures Appl. 102, 36-47 (2014) · Zbl 1300.34032 · doi:10.1016/j.matpur.2013.10.013
[5] Buzzi, C.A., Pazim, R., Pérez-González, S.: Center boundaries for planar piecewise-smooth differential equations with two zones. J. Math. Anal. Appl. 445, 631-649 (2017) · Zbl 1418.37036 · doi:10.1016/j.jmaa.2016.07.022
[6] di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth dynamical systems. Theory and applications. Applied Mathematical Sciences, vol. 163. Springer, London (2008). xxii+481 pp. ISBN: 978-1-84628-039-9 · Zbl 1146.37003
[7] Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer, Dordrecht (1988) · Zbl 0664.34001 · doi:10.1007/978-94-015-7793-9
[8] Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11, 181-211 (2012) · Zbl 1242.34020 · doi:10.1137/11083928X
[9] Freire, E., Ponce, E., Torres, F.: The discontinuous matching of two planar linear foci can have three nested crossing limit cycles. In: Proceedings of New Trends in Dynamical Systems. Salou, 2012, Publicacions Matemàtiques, Extra 2014, pp. 221-253 (2014) · Zbl 1343.34077
[10] Han, M., Zhang, W.: On Hopf bifurcation in non-smooth planar systems. J. Differ. Equ. 248, 2399-2416 (2010) · Zbl 1198.34059 · doi:10.1016/j.jde.2009.10.002
[11] Huan, S., Yang, X.: On the number of limit cycles in general planar piecewise linear systems. Discrete Contin. Dyn. Syst. A 32, 2147-2164 (2012) · Zbl 1248.34033 · doi:10.3934/dcds.2012.32.2147
[12] Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifur. Chaos Appl. Sci. Eng. 13, 2157-2188 (2003) · Zbl 1079.34029 · doi:10.1142/S0218127403007874
[13] Liang, F., Han, M., Romanovski, V.G.: Bifurcation of limit cycles by perturbing a piecewise linear hamiltonian system with a homoclinic loop. Nonlinear Anal. 75, 4355-4374 (2013) · Zbl 1264.34073 · doi:10.1016/j.na.2012.03.022
[14] Llibre, J., Ponce, E.: Piecewise linear feedback systems with arbitrary number of limit cycles. Int. J. Bifur. Chaos Appl. Sci. Eng. 13, 895-904 (2003) · Zbl 1071.34029 · doi:10.1142/S0218127403007047
[15] Llibre, J., Ponce, E., Zhang, X.: Existence of piecewise linear differential systems with exactly \[n\] n limit cycles for all \[n\in N\] n∈N. Nonlinear Anal. 54, 977-994 (2003) · Zbl 1039.34023 · doi:10.1016/S0362-546X(03)00122-6
[16] Llibre, J., Ponce, E.: Three nested limit cycles in discontinuous piecewise linear differential systems with two zones. Dyn. Contin. Discrete Impuls. Syst. Ser. B 19, 325-335 (2012) · Zbl 1268.34061
[17] Llibre, J., Novaes, D.D., Teixeira, M.A.: Maximum number of limit cycles for certain piecewise linear dynamical systems. Nonlinear Dyn. 82, 1159-1175 (2015) · Zbl 1348.34065 · doi:10.1007/s11071-015-2223-x
[18] Novaes, D.D., Ponce, E.: A simple solution to the Braga-Mello conjecture. Int. J. Bifur. Chaos Appl. Sci. Eng. 25, 1550009 (2015) · Zbl 1309.34044 · doi:10.1142/S0218127415500091
[19] Zou, C., Yang, J.: Piecewise linear differential system with a center-saddle type singularity. J. Math. Anal. Appl. 459, 453-463 (2018) · Zbl 1380.34048 · doi:10.1016/j.jmaa.2017.10.043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.