×

Diagonal complexes for surfaces of finite type and surfaces with involution. (English) Zbl 1493.57018

St. Petersbg. Math. J. 33, No. 3, 465-481 (2022) and Algebra Anal. 33, No. 3, 51-72 (2021).
In this paper the authors present two constructions that are inspired from ideas that arose in their previous paper [Izv. Math. 82, No. 5, 861–879 (2018; Zbl 1406.52033); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 82, No. 5, 3–22 (2018)]. The constructions are:
(1) The diagonal complex \(\mathcal{D}\) and its barycentric subdivision \(\mathcal{BD}\) associated with an oriented surface \(F\) of finite type equipped with labeled marked points, and in which, unlike in the previous paper, boundary components without marked points are allowed. (In the paper mentioned, the fact that each boundary component contains at least one marked point was a requirement, and in the present paper, this condition is relaxed.)
(2) The symmetric diagonal complex \(\mathcal{D}^{inv}\) and its barycentric subdivision \(\mathcal{BD}^{inv}\) related to a symmetric oriented surface \(F\) (that is, a surface equipped with a distinguished involution) together with a certain number of (symmetrically placed) labeled marked points. The symmetric diagonal complex is shown to be homotopy equivalent to the complex of a surface obtained by “taking a half” of the initial symmetric surface.
The paper is interesting and well written.

MSC:

57N60 Cellularity in topological manifolds
57Q70 Discrete Morse theory and related ideas in manifold topology
05E45 Combinatorial aspects of simplicial complexes

Citations:

Zbl 1406.52033

References:

[1] R. Bott and C. Taubes, On the self-linking of knots, J. Math. Phys. 35 (1994), no. 10, 5247-5287. 1295465 · Zbl 0863.57004
[2] M. Carr and S. Devadoss, Coxeter complexes and graph-associahedra, Topology Appl. 153 (2006), no. 12, 2155-2168. 2239078 · Zbl 1099.52001
[3] J. Gordon and G. Panina, Diagonal complexes, Izv. Ross. Akad. Nauk Ser. Mat. 82 (2018), no. 5, 3-22; English transl., Izv. Math. 82 (2018), no. 5, 861-879. 3859377 · Zbl 1406.52033
[4] S. Fomin and A. Zelevinsky, \(Y\)-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977-1018. 2031858 · Zbl 1057.52003
[5] L. Frappat, A. Sciarrino, and P. Sorba, Dictionary on Lie algebras and superalgebras, Acad. Press, San Diego, CA, 2000. 1773773 · Zbl 0965.17001
[6] R. Forman, Morse theory for cell complexes, Adv. Math. 134 (1998), no. 1, 90-145. 1612391 · Zbl 0896.57023
[7] \bysame , A user’s guide to discrete Morse theory, S\'em. Lothar. Combin. 48 (2002), Art. B48c. 1939695 · Zbl 1048.57015
[8] A. Hatcher, Algebraic topology, Cambridge Univ. Press, Cambridge, 2002. 1867354 · Zbl 1044.55001
[9] J. L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), no. 1, 157-176. 830043 · Zbl 0592.57009
[10] W. J. Harvey, Boundary structure of the modular group, Riemann surfaces and related topics, Proc. Stony Brook Conf. (Stony Brook, NY, 1978), Ann. Math. Stud., vol. 97, Princeton Univ. Press, Princeton, NJ, 1981, 245-251. 624817 · Zbl 0461.30036
[11] K. Igusa, Combinatorial Miller-Morita-Mumford classes and Witten cycles, Algebr. Geom. Topol. 4 (2004), no. 1, 473-520. 2077674 · Zbl 1072.57013
[12] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1-23. 1171758 · Zbl 0756.35081
[13] M. Korkmaz and A. Papadopulos, On the arc and curve complex of a surface, Math. Proc. Cambridge Philos. Soc. 148 (2010), no. 3, 473-483. 2609303 · Zbl 1194.57026
[14] S. Lando and A. Zvonkine, Graphs on surfaces and their applications, Encyclopaedia Math. Sci., vol. 141, Springer-Verlag, Berlin, 2004. 2036721 · Zbl 1040.05001
[15] M. Mulase and M. Penkava, Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over \(Q\), Asian J. Math. 2 (1998), no. 4, 875-920. 1734132 · Zbl 0964.30023
[16] G. Panina, Diagonal complexes for punctured polygons, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 448 (2016), 246-251; English transl., J. Math. Sci. (N.Y.) 224 (2017), no. 2, 335-338. 3576261 · Zbl 1376.52027
[17] R. C. Penner, The structure and singularities of quotient arc complexes, J. Topol. 1 (2008), no. 3, 527-550. 2417441 · Zbl 1160.32016
[18] \bysame , Decorated Teichm\"uller theory of bordered surfaces, Comm. Anal. Geom. 12 (2004), no. 4, 793-820. 2104076 · Zbl 1072.32008
[19] D. Quillen, Higher algebraic K-theory I, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., vol. 341, Springer, Berlin 1973, pp. 85-147. 0338129 · Zbl 1198.19001
[20] J. Stasheff, Homotopy associativity of \(H\)-spaces I, II, Trans. Amer. Math. Soc. 108 (1963), 293-312. 0158400 · Zbl 0114.39402
[21] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988), no. 2, 417-431. 956596 · Zbl 0674.57008
[22] M. Wachs, Poset topology \textup : tools and applications, Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 497-615. 2383132 · Zbl 1135.06001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.