×

Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy \(C\)-means clustering. (English) Zbl 1343.92260

Summary: An adaptively regularized kernel-based fuzzy \(C\)-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.

MSC:

92C55 Biomedical imaging and signal processing
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming

Software:

BrainWeb
Full Text: DOI

References:

[1] Sharma, N.; Aggarwal, L. M., Automated medical image segmentation techniques, Journal of Medical Physics, 35, 1, 3-14 (2010) · doi:10.4103/0971-6203.58777
[2] Elazab, A.; Hu, Q.; Jia, F.; Zhang, X., Content based modified reaction-diffusion equation for modeling tumor growth of low grade glioma, Proceedings of the 7th Cairo International Biomedical Engineering Conference (CIBEC ’14) · doi:10.1109/cibec.2014.7020929
[3] Pham, D. L.; Xu, C.; Prince, J. L., Current methods in medical image segmentation, Annual Review of Biomedical Engineering, 2, 315-337 (2000) · doi:10.1146/annurev.bioeng.2.1.315
[4] Despotović, I.; Goossens, B.; Philips, W., MRI segmentation of the human brain: challenges, methods, and applications, Computational and Mathematical Methods in Medicine, 2015 (2015) · doi:10.1155/2015/450341
[5] Ruan, S.; Jaggi, C.; Xue, J.; Fadili, J.; Bloyet, D., Brain tissue classification of magnetic resonance images using partial volume modeling, IEEE Transactions on Medical Imaging, 19, 12, 1172-1186 (2000) · doi:10.1109/42.897810
[6] Dunn, J. C., A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Journal of Cybernetics, 3, 3, 32-57 (1973) · Zbl 0291.68033 · doi:10.1080/01969727308546046
[7] Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithms. Pattern Recognition with Fuzzy Objective Function Algorithms, Advanced Applications in Pattern Recognition (1981), Boston, Mass, USA: Springer, Boston, Mass, USA · Zbl 0503.68069 · doi:10.1007/978-1-4757-0450-1
[8] Ahmed, M. N.; Yamany, S. M.; Mohamed, N.; Farag, A. A.; Moriarty, T., A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data, IEEE Transactions on Medical Imaging, 21, 3, 193-199 (2002) · doi:10.1109/42.996338
[9] Szilagyi, L.; Benyo, Z.; Szilagyi, S. M.; Adam, H. S., MR brain image segmentation using an enhanced fuzzy C-means algorithm, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society · doi:10.1109/IEMBS.2003.1279866
[10] Chen, S.; Zhang, D., Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure, IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 34, 4, 1907-1916 (2004) · doi:10.1109/tsmcb.2004.831165
[11] Cai, W.; Chen, S.; Zhang, D., Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation, Pattern Recognition, 40, 3, 825-838 (2007) · Zbl 1118.68133 · doi:10.1016/j.patcog.2006.07.011
[12] Yang, M.-S.; Tsai, H.-S., A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction, Pattern Recognition Letters, 29, 12, 1713-1725 (2008) · doi:10.1016/j.patrec.2008.04.016
[13] Krinidis, S.; Chatzis, V., A robust fuzzy local information C-means clustering algorithm, IEEE Transactions on Image Processing, 19, 5, 1328-1337 (2010) · Zbl 1371.68306 · doi:10.1109/TIP.2010.2040763
[14] Gong, M.; Liang, Y.; Shi, J.; Ma, W.; Ma, J., Fuzzy C-means clustering with local information and kernel metric for image segmentation, IEEE Transactions on Image Processing, 22, 2, 573-584 (2013) · Zbl 1373.94141 · doi:10.1109/tip.2012.2219547
[15] Balafar, M. A., Gaussian mixture model based segmentation methods for brain MRI images, Artificial Intelligence Review, 41, 3, 429-439 (2014) · doi:10.1007/s10462-012-9317-3
[16] Nikou, C.; Galatsanos, N. P.; Likas, A. C., A class-adaptive spatially variant mixture model for image segmentation, IEEE Transactions on Image Processing, 16, 4, 1121-1130 (2007) · doi:10.1109/tip.2007.891771
[17] Ferreira da Silva, A. R., A Dirichlet process mixture model for brain MRI tissue classification, Medical Image Analysis, 11, 2, 169-182 (2007) · doi:10.1016/j.media.2006.12.002
[18] Nguyen, T. M.; Wu, Q. M. J., Fast and robust spatially constrained gaussian mixture model for image segmentation, IEEE Transactions on Circuits and Systems for Video Technology, 23, 4, 621-635 (2013) · doi:10.1109/tcsvt.2012.2211176
[19] Chatzis, S. P.; Varvarigou, T. A., A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation, IEEE Transactions on Fuzzy Systems, 16, 5, 1351-1361 (2008) · doi:10.1109/tfuzz.2008.2005008
[20] Chatzis, S., A method for training finite mixture models under a fuzzy clustering principle, Fuzzy Sets and Systems, 161, 23, 3000-3013 (2010) · Zbl 1204.62099 · doi:10.1016/j.fss.2010.03.015
[21] Ji, Z.; Liu, J.; Cao, G.; Sun, Q.; Chen, Q., Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation, Pattern Recognition, 47, 7, 2454-2466 (2014) · doi:10.1016/j.patcog.2014.01.017
[22] Li, C.; Xu, C.; Anderson, A.; Gore, J. C., MRI tissue classification and bias field estimation based on coherent local intensity clustering: a unified energy minimization framework, Information Processing in Medical Imaging: 21st International Conference, IPMI 2009, Williamsburg, VA, USA, July 5-10, 2009. Proceedings. Information Processing in Medical Imaging: 21st International Conference, IPMI 2009, Williamsburg, VA, USA, July 5-10, 2009. Proceedings, Lecture Notes in Computer Science, 5636, 288-299 (2009), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/978-3-642-02498-6_24
[23] Li, C.; Gore, J. C.; Davatzikos, C., Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation, Magnetic Resonance Imaging, 32, 7, 913-923 (2014) · doi:10.1016/j.mri.2014.03.010
[24] Szilágyi, L., Lessons to learn from a mistaken optimization, Pattern Recognition Letters, 36, 1, 29-35 (2014) · doi:10.1016/j.patrec.2013.08.027
[25] Hofmann, T.; Schölkopf, B.; Smola, A. J., Kernel methods in machine learning, The Annals of Statistics, 36, 3, 1171-1220 (2008) · Zbl 1151.30007 · doi:10.1214/009053607000000677
[26] Müller, K.-R.; Mika, S.; Rätsch, G.; Tsuda, K.; Schölkopf, B., An introduction to kernel-based learning algorithms, IEEE Transactions on Neural Networks, 12, 2, 181-201 (2001) · doi:10.1109/72.914517
[27] Souza, C. R., Kernel Functions for Machine Learning Applications (2010)
[28] Vovk, U.; Pernuš, F.; Likar, B., A review of methods for correction of intensity inhomogeneity in MRI, IEEE Transactions on Medical Imaging, 26, 3, 405-421 (2007) · doi:10.1109/tmi.2006.891486
[29] Cocosco, C. A.; Kollokian, V.; Kwan, R. K.-S.; Evans, A. C., BrainWeb: Online Interface to a 3D MRI Simulated Brain Database
[30] He, L.; Greenshields, I. R., A non-local maximum likelihood estimation method for Rician noise reduction in MR images, IEEE Transactions on Medical Imaging, 28, 2, 165-172 (2009) · doi:10.1109/tmi.2008.927338
[31] Zhang, H.; Fritts, J. E.; Goldman, S. A., An entropy-based objective evaluation method for image segmentation, Proceedings of the Storage and Retrieval Methods and Applications for Multimedia · doi:10.1117/12.527167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.