×

A numerical study of granular shear flows of rod-like particles using the discrete element method. (English) Zbl 1284.76388

Summary: The effect of particle aspect ratio and surface geometry on granular flows is assessed by performing numerical simulations of rod-like particles in simple shear flows using the discrete element method. The effect of particle surface geometry is explored by adopting two types of particles: glued-spheres particles and true cylindrical particles. The particle aspect ratio varies from one to six. Compared to frictionless spherical particles, smaller stresses are obtained for the glued-spheres and cylindrical particle systems in dilute and moderately dense flows due to the loss of translational energy, which is partially converted to rotational energy, for the non-spherical particles. For dilute granular flows of non-spherical particles, stresses are primarily affected by the particle aspect ratio rather than the surface geometry. As the particle aspect ratio increases, the effective particle projected area in the plane perpendicular to the flow direction increases, so that the probability of the occurrence of the particle collisions increases, leading to a reduction in particle velocity fluctuation and therefore a decrease in the stresses. Hence, a simple modification is made to the kinetic theory for granular flows to describe the stress tensors for dilute flows of non-spherical particles by incorporating a normalized effective particle projected area to account for the effect of particle collision probability. For dense granular flows, the stresses depend on both the particle aspect ratio and the surface geometry. Sharp stress increases at high solid volume fractions are observed for the glued-spheres particles with large aspect ratios due to the bumpy surfaces, which impede the flow. However, smaller stresses are obtained for the true cylindrical particles with large aspect ratios at high solid volume fractions. This trend is attributed to the combined effects of the smooth particle surfaces and the particle alignments such that the major/long axes of particles are aligned in the flow direction. In addition, the apparent friction coefficient, defined as the ratio of shear to normal stresses, is found to decrease as the particle aspect ratio increases and/or the particle surface becomes smoother at high solid volume fractions.

MSC:

76T25 Granular flows
76M25 Other numerical methods (fluid mechanics) (MSC2010)
74E20 Granularity
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevE.71.061307 · doi:10.1103/PhysRevE.71.061307
[2] DOI: 10.1017/S0022112090001380 · doi:10.1017/S0022112090001380
[3] DOI: 10.1017/S0022112087000570 · doi:10.1017/S0022112087000570
[4] DOI: 10.1063/1.2000768 · Zbl 1187.76585 · doi:10.1063/1.2000768
[5] DOI: 10.1122/1.549893 · doi:10.1122/1.549893
[6] DOI: 10.1017/S0022112010002764 · Zbl 1205.76277 · doi:10.1017/S0022112010002764
[7] DOI: 10.1103/PhysRevE.80.031304 · doi:10.1103/PhysRevE.80.031304
[8] DOI: 10.1007/s10035-007-0038-2 · Zbl 1200.74038 · doi:10.1007/s10035-007-0038-2
[9] DOI: 10.1017/S0022112099005182 · Zbl 0948.76080 · doi:10.1017/S0022112099005182
[10] DOI: 10.1063/1.1449466 · doi:10.1063/1.1449466
[11] DOI: 10.1063/1.865302 · Zbl 0587.76128 · doi:10.1063/1.865302
[12] DOI: 10.1063/1.2364168 · doi:10.1063/1.2364168
[13] DOI: 10.1063/1.1672048 · doi:10.1063/1.1672048
[14] J. Reine Angew. Math. 92 pp 156– (1882)
[15] DOI: 10.1017/S0022112086002495 · Zbl 0587.76170 · doi:10.1017/S0022112086002495
[16] DOI: 10.1016/j.powtec.2012.05.015 · doi:10.1016/j.powtec.2012.05.015
[17] DOI: 10.1063/1.3546037 · doi:10.1063/1.3546037
[18] DOI: 10.1017/S0022112095000048 · Zbl 0881.76010 · doi:10.1017/S0022112095000048
[19] DOI: 10.1016/j.powtec.2005.12.008 · doi:10.1016/j.powtec.2005.12.008
[20] DOI: 10.1146/annurev.fluid.40.111406.102142 · Zbl 1136.76051 · doi:10.1146/annurev.fluid.40.111406.102142
[21] DOI: 10.1680/geot.1979.29.1.47 · doi:10.1680/geot.1979.29.1.47
[22] DOI: 10.1017/S0022112005005616 · Zbl 1075.74027 · doi:10.1017/S0022112005005616
[23] DOI: 10.1016/S0307-904X(01)00050-6 · Zbl 1018.76033 · doi:10.1016/S0307-904X(01)00050-6
[24] J. Fluid Mech. 465 pp 261– (2002)
[25] DOI: 10.1016/j.powtec.2007.06.018 · doi:10.1016/j.powtec.2007.06.018
[26] DOI: 10.1017/S0022112089001540 · doi:10.1017/S0022112089001540
[27] DOI: 10.1103/PhysRevE.84.031301 · doi:10.1103/PhysRevE.84.031301
[28] DOI: 10.1016/j.biosystemseng.2004.03.010 · doi:10.1016/j.biosystemseng.2004.03.010
[29] J. Fluid Mech. 457 pp 377– (2002)
[30] DOI: 10.1103/PhysRevLett.88.174301 · doi:10.1103/PhysRevLett.88.174301
[31] DOI: 10.1017/S0022112084000586 · Zbl 0553.73098 · doi:10.1017/S0022112084000586
[32] DOI: 10.1088/0022-3719/5/15/006 · doi:10.1088/0022-3719/5/15/006
[33] DOI: 10.1063/1.1633264 · Zbl 1186.76308 · doi:10.1063/1.1633264
[34] DOI: 10.1016/j.ces.2010.08.007 · doi:10.1016/j.ces.2010.08.007
[35] DOI: 10.1016/j.ces.2010.08.006 · doi:10.1016/j.ces.2010.08.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.