×

Three-dimensional de Sitter horizon thermodynamics. (English) Zbl 1476.81090

Summary: We explore thermodynamic contributions to the three-dimensional de Sitter horizon originating from metric and Chern-Simons gauge field fluctuations. In Euclidean signature these are computed by the partition function of gravity coupled to matter semi-classically expanded about the round three-sphere saddle. We investigate a corresponding Lorentzian picture — drawing inspiration from the topological entanglement entropy literature — in the form of an edge-mode theory residing at the de Sitter horizon. We extend the discussion to three-dimensional gravity with positive cosmological constant, viewed (semi-classically) as a complexified Chern-Simons theory. The putative gravitational edge-mode theory is a complexified version of the chiral Wess-Zumino-Witten model associated to the edge-modes of ordinary Chern-Simons theory. We introduce and solve a family of complexified abelian Chern-Simons theories as a way to elucidate some of the more salient features of the gravitational edge-mode theories. We comment on the relation to the \( \mathrm{AdS}_4/ \mathrm{CFT}_3\) correspondence.

MSC:

81T28 Thermal quantum field theory
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
58J28 Eta-invariants, Chern-Simons invariants

References:

[1] D. Anninos, D.A. Galante and D.M. Hofman, de Sitter horizons & holographic liquids, JHEP07 (2019) 038 [arXiv:1811.08153] [INSPIRE]. · Zbl 1418.83034
[2] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[3] Bousso, R., Holography in general space-times, JHEP, 06, 028 (1999) · Zbl 0951.83027 · doi:10.1088/1126-6708/1999/06/028
[4] T. Banks, Lectures on Holographic Space Time, arXiv:1311.0755 [INSPIRE].
[5] Alishahiha, M.; Karch, A.; Silverstein, E.; Tong, D., The dS/dS correspondence, AIP Conf. Proc., 743, 393 (2004) · doi:10.1063/1.1848341
[6] Compère, G.; Fiorucci, A.; Ruzziconi, R., The Λ-BMS_4charge algebra, JHEP, 10, 205 (2020) · Zbl 1456.81215 · doi:10.1007/JHEP10(2020)205
[7] L. Freidel, C. Goeller and E.R. Livine, The Quantum Gravity Disk: Discrete Current Algebra, arXiv:2103.13171 [INSPIRE]. · Zbl 1507.83027
[8] Gibbons, GW; Hawking, SW, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D, 15, 2752 (1977) · doi:10.1103/PhysRevD.15.2752
[9] D. Anninos, F. Denef, Y.T.A. Law and Z. Sun, Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions, arXiv:2009.12464 [INSPIRE].
[10] Y.T.A. Law, A Compendium of Sphere Path Integrals, arXiv:2012.06345 [INSPIRE].
[11] J.R. David and J. Mukherjee, Partition functions of p-forms from Harish-Chandra characters, arXiv:2105.03662 [INSPIRE]. · Zbl 1472.81218
[12] Carlip, S., The Sum over topologies in three-dimensional Euclidean quantum gravity, Class. Quant. Grav., 10, 207 (1993) · Zbl 0776.58008 · doi:10.1088/0264-9381/10/2/004
[13] Guadagnini, E.; Tomassini, P., Sum over the geometries of three manifolds, Phys. Lett. B, 336, 330 (1994) · doi:10.1016/0370-2693(94)90541-X
[14] Castro, A.; Lashkari, N.; Maloney, A., A de Sitter Farey Tail, Phys. Rev. D, 83, 124027 (2011) · doi:10.1103/PhysRevD.83.124027
[15] Park, M-I, Statistical entropy of three-dimensional Kerr-de Sitter space, Phys. Lett. B, 440, 275 (1998) · doi:10.1016/S0370-2693(98)01119-8
[16] J.M. Maldacena and A. Strominger, Statistical entropy of de Sitter space, JHEP02 (1998) 014 [gr-qc/9801096] [INSPIRE]. · Zbl 0955.83011
[17] Bañados, M.; Brotz, T.; Ortiz, ME, Quantum three-dimensional de Sitter space, Phys. Rev. D, 59, 046002 (1999) · doi:10.1103/PhysRevD.59.046002
[18] Govindarajan, TR; Kaul, RK; Suneeta, V., Quantum gravity on dS_3, Class. Quant. Grav., 19, 4195 (2002) · Zbl 1003.83010 · doi:10.1088/0264-9381/19/15/320
[19] Dong, X.; Horn, B.; Silverstein, E.; Torroba, G., Micromanaging de Sitter holography, Class. Quant. Grav., 27, 245020 (2010) · Zbl 1206.83140 · doi:10.1088/0264-9381/27/24/245020
[20] Polchinski, J., The Phase of the Sum Over Spheres, Phys. Lett. B, 219, 251 (1989) · doi:10.1016/0370-2693(89)90387-0
[21] Anninos, D.; Bautista, T.; Mühlmann, B., The two-sphere partition function in two-dimensional quantum gravity, JHEP, 09, 116 (2021) · Zbl 1472.83029 · doi:10.1007/JHEP09(2021)116
[22] B. Mühlmann, The two-sphere partition function in two-dimensional quantum gravity at fixed area, arXiv:2106.04532 [INSPIRE]. · Zbl 1472.83070
[23] Achucarro, A.; Townsend, PK, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B, 180, 89 (1986) · doi:10.1016/0370-2693(86)90140-1
[24] E. Witten, (2+1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B311 (1988) 46 [INSPIRE]. · Zbl 1258.83032
[25] Witten, E., Quantization of Chern-Simons Gauge Theory With Complex Gauge Group, Commun. Math. Phys., 137, 29 (1991) · Zbl 0717.53074 · doi:10.1007/BF02099116
[26] Witten, E., Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math., 50, 347 (2011) · Zbl 1337.81106 · doi:10.1090/amsip/050/19
[27] S. Gukov, M. Mariño and P. Putrov, Resurgence in complex Chern-Simons theory, arXiv:1605.07615 [INSPIRE].
[28] Dimofte, T.; Gukov, S.; Lenells, J.; Zagier, D., Exact Results for Perturbative Chern-Simons Theory with Complex Gauge Group, Commun. Num. Theor. Phys., 3, 363 (2009) · Zbl 1214.81151 · doi:10.4310/CNTP.2009.v3.n2.a4
[29] Dimofte, T., Perturbative and nonperturbative aspects of complex Chern-Simons theory, J. Phys. A, 50, 443009 (2017) · Zbl 1386.81121 · doi:10.1088/1751-8121/aa6a5b
[30] C. Vafa, Fractional Quantum Hall Effect and M-theory, arXiv:1511.03372 [INSPIRE].
[31] Kitaev, A.; Preskill, J., Topological entanglement entropy, Phys. Rev. Lett., 96, 110404 (2006) · doi:10.1103/PhysRevLett.96.110404
[32] M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett.96 (2006) 110405 [cond-mat/0510613] [INSPIRE].
[33] P. Fendley, M.P.A. Fisher and C. Nayak, Topological entanglement entropy from the holographic partition function, J. Statist. Phys.126 (2007) 1111 [cond-mat/0609072] [INSPIRE]. · Zbl 1119.82011
[34] Witten, E., Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys., 121, 351 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
[35] Buividovich, PV; Polikarpov, MI, Entanglement entropy in gauge theories and the holographic principle for electric strings, Phys. Lett. B, 670, 141 (2008) · doi:10.1016/j.physletb.2008.10.032
[36] Donnelly, W., Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D, 85, 085004 (2012) · doi:10.1103/PhysRevD.85.085004
[37] Donnelly, W., Entanglement entropy and nonabelian gauge symmetry, Class. Quant. Grav., 31, 214003 (2014) · Zbl 1304.81121 · doi:10.1088/0264-9381/31/21/214003
[38] Casini, H.; Huerta, M.; Rosabal, JA, Remarks on entanglement entropy for gauge fields, Phys. Rev. D, 89, 085012 (2014) · doi:10.1103/PhysRevD.89.085012
[39] Ghosh, S.; Soni, RM; Trivedi, SP, On The Entanglement Entropy For Gauge Theories, JHEP, 09, 069 (2015) · Zbl 1388.81438 · doi:10.1007/JHEP09(2015)069
[40] Lin, J.; Radičević, D., Comments on defining entanglement entropy, Nucl. Phys. B, 958, 115118 (2020) · Zbl 1473.81045 · doi:10.1016/j.nuclphysb.2020.115118
[41] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer-Verlag, Graduate Texts in Contemporary Physics, New York U.S.A. (1997) [DOI] [INSPIRE]. · Zbl 0869.53052
[42] Ooguri, H.; Vafa, C., World sheet derivation of a large N duality, Nucl. Phys. B, 641, 3 (2002) · Zbl 0998.81073 · doi:10.1016/S0550-3213(02)00620-X
[43] Anninos, D.; Mühlmann, B., Notes on matrix models (matrix musings), J. Stat. Mech., 2020, 083109 (2008) · Zbl 1459.81094 · doi:10.1088/1742-5468/aba499
[44] Dunne, GV; Jackiw, R.; Trugenberger, CA, Chern-Simons Theory in the Schrödinger Representation, Annals Phys., 194, 197 (1989) · doi:10.1016/0003-4916(89)90036-5
[45] Elitzur, S.; Moore, GW; Schwimmer, A.; Seiberg, N., Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory, Nucl. Phys. B, 326, 108 (1989) · doi:10.1016/0550-3213(89)90436-7
[46] D. Tong, Lectures on the Quantum Hall Effect, (2016) [arXiv:1606.06687] [INSPIRE].
[47] S. Giombi, I.R. Klebanov and G. Tarnopolsky, Conformal QED_d, F-Theorem and the ϵ Expansion, J. Phys. A49 (2016) 135403 [arXiv:1508.06354] [INSPIRE]. · Zbl 1348.81454
[48] Floreanini, R.; Jackiw, R., Selfdual Fields as Charge Density Solitons, Phys. Rev. Lett., 59, 1873 (1987) · doi:10.1103/PhysRevLett.59.1873
[49] Wen, XG, Chiral Luttinger Liquid and the Edge Excitations in the Fractional Quantum Hall States, Phys. Rev. B, 41, 12838 (1990) · doi:10.1103/PhysRevB.41.12838
[50] G. ‘t Hooft, On the Quantum Structure of a Black Hole, Nucl. Phys. B256 (1985) 727 [INSPIRE].
[51] Das, D.; Datta, S., Universal features of left-right entanglement entropy, Phys. Rev. Lett., 115, 131602 (2015) · doi:10.1103/PhysRevLett.115.131602
[52] Geiller, M., Edge modes and corner ambiguities in 3d Chern-Simons theory and gravity, Nucl. Phys. B, 924, 312 (2017) · Zbl 1373.81284 · doi:10.1016/j.nuclphysb.2017.09.010
[53] Wong, G., A note on entanglement edge modes in Chern Simons theory, JHEP, 08, 020 (2018) · Zbl 1396.81046 · doi:10.1007/JHEP08(2018)020
[54] Strominger, A., The dS/CFT correspondence, JHEP, 10, 034 (2001) · doi:10.1088/1126-6708/2001/10/034
[55] Schellekens, AN, Introduction to conformal field theory, Fortsch. Phys., 44, 605 (1996) · Zbl 0921.17009 · doi:10.1002/prop.2190440802
[56] Dong, S.; Fradkin, E.; Leigh, RG; Nowling, S., Topological Entanglement Entropy in Chern-Simons Theories and Quantum Hall Fluids, JHEP, 05, 016 (2008) · doi:10.1088/1126-6708/2008/05/016
[57] Sagi, E.; Santos, RA, Supersymmetry in the Fractional Quantum Hall Regime, Phys. Rev. B, 95, 205144 (2017) · doi:10.1103/PhysRevB.95.205144
[58] K. Pilch, P. van Nieuwenhuizen and M.F. Sohnius, de Sitter Superalgebras and Supergravity, Commun. Math. Phys.98 (1985) 105 [INSPIRE]. · Zbl 1223.83048
[59] T. Anous, D.Z. Freedman and A. Maloney, de Sitter Supersymmetry Revisited, JHEP07 (2014) 119 [arXiv:1403.5038] [INSPIRE]. · Zbl 1333.81154
[60] Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G., Topological field theory, Phys. Rept., 209, 129 (1991) · Zbl 1021.81790 · doi:10.1016/0370-1573(91)90117-5
[61] Cattaneo, AS; Cotta-Ramusino, P.; Fröhlich, J.; Martellini, M., Topological BF theories in three-dimensions and four-dimensions, J. Math. Phys., 36, 6137 (1995) · Zbl 0848.57005 · doi:10.1063/1.531238
[62] Dunne, GV; Jackiw, R., ‘Peierls substitution’ and Chern-Simons quantum mechanics, Nucl. Phys. B Proc. Suppl., 33, 114 (1993) · Zbl 0991.81607 · doi:10.1016/0920-5632(93)90376-H
[63] de Alfaro, V.; Fubini, S.; Furlan, G., Conformal Invariance in Quantum Mechanics, Nuovo Cim. A, 34, 569 (1976) · doi:10.1007/BF02785666
[64] Anous, T.; Skulte, J., An invitation to the principal series, SciPost Phys., 9, 028 (2020) · doi:10.21468/SciPostPhys.9.3.028
[65] K. Andrzejewski and J. Gonera, On the geometry of conformal mechanics, arXiv:1108.1299 [INSPIRE]. · Zbl 1309.81105
[66] K. Andrzejewski, Quantum conformal mechanics emerging from unitary representations of SL(2,ℝ), Annals Phys.367 (2016) 227 [arXiv:1506.05596] [INSPIRE]. · Zbl 1378.81101
[67] S. Carlip, The Statistical mechanics of the (2 + 1)-dimensional black hole, Phys. Rev. D51 (1995) 632 [gr-qc/9409052] [INSPIRE]. · Zbl 0839.53071
[68] M. Bañados and A. Gomberoff, Black hole entropy in the Chern-Simons formulation of (2+1) gravity, Phys. Rev. D55 (1997) 6162 [gr-qc/9611044] [INSPIRE].
[69] Arcioni, G.; Blau, M.; O’Loughlin, M., On the boundary dynamics of Chern-Simons gravity, JHEP, 01, 067 (2003) · Zbl 1225.81108 · doi:10.1088/1126-6708/2003/01/067
[70] Castro, A.; Sabella-Garnier, P.; Zukowski, C., Gravitational Wilson Lines in 3D de Sitter, JHEP, 07, 202 (2020) · Zbl 1451.83057 · doi:10.1007/JHEP07(2020)202
[71] Kapustin, A.; Willett, B.; Yaakov, I., Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP, 03, 089 (2010) · Zbl 1271.81110 · doi:10.1007/JHEP03(2010)089
[72] Drukker, N.; Mariño, M.; Putrov, P., From weak to strong coupling in ABJM theory, Commun. Math. Phys., 306, 511 (2011) · Zbl 1232.81043 · doi:10.1007/s00220-011-1253-6
[73] Witten, E., Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys., 2, 505 (1998) · Zbl 1057.81550 · doi:10.4310/ATMP.1998.v2.n3.a3
[74] McGough, L.; Verlinde, H., Bekenstein-Hawking Entropy as Topological Entanglement Entropy, JHEP, 11, 208 (2013) · Zbl 1342.83256 · doi:10.1007/JHEP11(2013)208
[75] Rubin, MA; Ordóñez, CR, Symmetric Tensor Eigen Spectrum of the Laplacian on n Spheres, J. Math. Phys., 26, 65 (1985) · Zbl 0554.58050 · doi:10.1063/1.526749
[76] Fliss, JR; Wen, X.; Parrikar, O.; Hsieh, C-T; Han, B.; Hughes, TL, Interface Contributions to Topological Entanglement in Abelian Chern-Simons Theory, JHEP, 09, 056 (2017) · Zbl 1382.58019 · doi:10.1007/JHEP09(2017)056
[77] L. Rozansky, Witten’s invariant of three-dimensional manifolds: Loop expansion and surgery calculus, hep-th/9401060 [INSPIRE]. · Zbl 1149.58307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.