×

Improved model reduction with basis enrichment for dynamic analysis of nearly periodic structures including substructures with geometric changes. (English) Zbl 07866545

Summary: Model reduction based on matrix interpolation provides an efficient way to compute the dynamic response of nearly periodic structures composed of substructures (cells) with varying properties. This may concern 2D or 3D substructures subjected to geometric modifications (mesh variations) or more classic dimension changes. An efficient interpolation strategy for a nearly periodic structure can be obtained by (i) interpolating reduced substructure matrices over a multi-dimensional parametric space and (ii) reducing the number of degrees of freedom at substructure boundaries by considering the interface modes of an equivalent purely periodic structure. In this paper, two basis enrichment techniques are proposed to improve the accuracy of the interpolation strategy. This consists in (i) considering high-order static modes, in addition to component modes, to express the reduced substructure matrices and (ii) adding static correction vectors into the basis of interface modes to account for the varying properties of the substructures. Numerical experiments are carried out which clearly highlight the relevance of the basis enrichment techniques for predicting the harmonic behavior of nearly periodic structures with 2D or 3D substructures.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
93Cxx Model systems in control theory
65Nxx Numerical methods for partial differential equations, boundary value problems

Software:

DistMesh
Full Text: DOI

References:

[1] Jensen, J., Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures, J. Sound Vib., 266, 1053-1078, 2003
[2] Hussein, M., Reduced Bloch mode expansion for periodic media band structure calculations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465, 2825-2848, 2009 · Zbl 1186.82084
[3] Krattiger, D.; Hussein, M., Generalized Bloch mode synthesis for accelerated calculation of elastic band structures, J. Comput. Phys., 357, 183-205, 2018 · Zbl 1381.74109
[4] Poggeto, V. D.; Serpa, A., Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method, J. Sound Vib., 495, Article 115909 pp., 2021
[5] Palermo, A.; Marzani, A., Extended Bloch mode synthesis: Ultrafast method for the computation of complex band structures in phononic media, Int. J. Solids Struct., 100-101, 29-40, 2016
[6] Collet, M.; Ouisse, M.; Ruzzene, M.; Ichchou, M., Floquet-Bloch decomposition for the computation of dispersion oftwo-dimensional periodic, damped mechanical systems, Int. J. Solids Struct., 48, 20, 2837-2848, 2011
[7] Phani, A.; Woodhouse, J.; Fleck, N., Wave propagation in two-dimensional periodic lattices, J. Acoust. Soc. Am., 119, 4, 1995-2005, 2006
[8] Sugino, C.; Xia, Y.; Leadenham, S.; Ruzzene, M.; Erturk, A., A general theory for bandgap estimation in locally resonant metastructures, J. Sound Vib., 406, 104-123, 2017
[9] Langley, R., The response of two-dimensional periodic structures to point harmonic forcing, J. Sound Vib., 197, 4, 447-469, 1996
[10] Duhamel, D., Finite element computation of Green’s functions, Eng. Anal. Bound. Elem., 31, 11, 919-930, 2007 · Zbl 1195.65201
[11] Duhamel, D., Computation of the dynamic scalar response of large two-dimensional periodic and symmetric structures by the wave finite element method, Finite Elem. Anal. Des., 230, Article 104096 pp., 2024
[12] Craig, R.; Bampton, M., Coupling of substructures for dynamic analyses, AIAA J., 6, 7, 1313-1319, 1968 · Zbl 0159.56202
[13] MacNeal, R., A hybrid method of component mode synthesis, Comput. Struct., 1, 4, 581-601, 1971
[14] Rubin, S., Improved component-mode representation for structural dynamic analysis, AIAA J., 13, 8, 995-1006, 1975 · Zbl 0334.70014
[15] Gruber, F.; Rixen, D., Evaluation of substructure reduction techniques with fixed and free interfaces, J. Mech. Eng., 62, 7-8, 452-462, 2016
[16] Craig, R. R.; Chang, C.-J., Substructure Coupling for Dynamic Analysis and TestingReport, 1977, National Aeronautics and Space Administration
[17] Castanier, M.; Tan, Y.-C.; Pierre, C., Characteristic constraint modes for component mode synthesis, AIAA J., 39, 6, 1182-1187, 2001
[18] Krattiger, D.; Wu, L.; Zacharczuk, M.; Buck, M.; Kuether, R.; Allen, M.; Tiso, P.; Brake, M., Interface reduction for Hurty/Craig-Bampton substructured models: Review and improvements, Mech. Syst. Signal Process., 114, 579-603, 2019
[19] Castanier, M.; Pierre, C., Individual and interactive mechanisms for localization and dissipation in a mono-coupled nearly-periodic structure, J. Sound Vib., 168, 3, 479-505, 1993 · Zbl 0925.73431
[20] Li, F.-M.; Wang, Y.-S., Study on wave localization in disordered periodic layered piezoelectric composite structures, Int. J. Solids Struct., 42, 6457-6474, 2005 · Zbl 1119.74440
[21] Chen, A.-L.; Wang, Y.-S., Study on band gaps of elastic waves propagating in one-dimensional disordered phononic crystals, Physica B, 392, 369-378, 2007
[22] Hussein, M.; Hulbert, G.; Scott, R., Dispersive elastodynamics of 1D banded materials and structures: Design, J. Sound Vib., 307, 865-893, 2007
[23] Mencik, J.-M., Model reduction based on matrix interpolation and distorted finite element meshes for dynamic analysis of 2D nearly periodic structures, Finite Elem. Anal. Des., 188, Article 103518 pp., 2021
[24] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57, 4, 483-531, 2015 · Zbl 1339.37089
[25] Baur, U.; Beattie, C.; Benner, B.; Gugercin, S., Interpolatory projection methods for parameterized model reduction, SIAM J. Sci. Comput., 33, 5, 2489-2518, 2011 · Zbl 1254.93032
[26] Hetmaniuk, U.; Tezaur, R.; Farhat, C., An adaptive scheme for a class of interpolatory model reduction methods for frequency response problems, Internat. J. Numer. Methods Engrg., 93, 1109-1124, 2013 · Zbl 1352.74132
[27] Panzer, H.; Mohring, J.; Eid, R.; Lohmann, B., Parametric model order reduction by matrix interpolation, at-Automatisierungstechnik, 58, 8, 475-484, 2010
[28] Baumann, M.; Eberhard, P., Interpolation-based parametric model order reduction for material removal in elastic multibody systems, Multibody Syst. Dyn., 39, 21-36, 2017 · Zbl 1404.70017
[29] Amsallem, D.; Farhat, C., An online method for interpolating linear parametric reduced-order models, SIAM J. Sci. Comput., 33, 5, 2169-2198, 2011 · Zbl 1269.65059
[30] Goller, B.; Pradlwarter, H.; Schuëller, G., An interpolation scheme for the approximation of dynamical systems, Comput. Methods Appl. Mech. Engrg., 200, 414-423, 2011 · Zbl 1225.74042
[31] Degroote, J.; Vierendeels, J.; Willcox, K., Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis, Internat. J. Numer. Methods Fluids, 63, 207-230, 2010 · Zbl 1188.65110
[32] M. Geuss, H. Panzer, B. Lohmann, On parametric model order reduction by matrix interpolation, in: Proceedings of the 2013 European Control Conference, ECC, Zürich, Switzerland, 2013, pp. 3433-3438.
[33] D. Rixen, High order static correction modes for component mode synthesis, in: Proceedings of the Fifth World Congress on Computational Mechanics, WCCM, Vienna, Austria, 2002.
[34] Kim, J.-G.; Lee, P.-S., An enhanced Craig-Bampton method, Internat. J. Numer. Methods Engrg., 103, 79-93, 2015 · Zbl 1352.74378
[35] Mencik, J.-M.; Bouhaddi, N., Dynamic reanalysis of structures with geometric variability and parametric uncertainties via an adaptive model reduction method, Mech. Syst. Signal Process., 190, Article 110127 pp., 2021
[36] Masson, G.; Brik, B. A.; Cogan, S.; Bouhaddi, N., Component mode synthesis (CMS) based on an enriched Ritz approach for efficient structural optimization, J. Sound Vib., 296, 845-860, 2006
[37] Hussein, M.; Leamy, M.; Ruzzene, M., Dynamics of phononic materials and structures: Historical origins, recent progress and future outlook, Appl. Mech. Rev., 66, 4, Article 040802 pp., 2014
[38] Géradin, M.; Rixen, D., Mechanical Vibrations: Theory and Application to Structural Dynamics, 1994, Wiley: Wiley Paris
[39] Rixen, D., A dual Craig-Bampton method for dynamic substructuring, J. Comput. Appl. Math., 168, 1-2, 383-391, 2004 · Zbl 1107.70303
[40] Persson, P.-O.; Strang, G., A simple mesh generator in MATLAB, SIAM Rev., 46, 2, 329-345, 2004 · Zbl 1061.65134
[41] Castanier, M.; Ottarsson, G.; Pierre, C., A reduced order modeling technique for mistuned bladed disks, J. Vib. Acoust., 119, 3, 439-447, 1997
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.