×

On simulation of continuous determinantal point processes. (English) Zbl 1523.62021

Summary: We review how to simulate continuous determinantal point processes (DPPs) and improve the current simulation algorithms in several important special cases as well as detail how certain types of conditional simulation can be carried out. Importantly we show how to speed up the simulation of the widely used Fourier based projection DPPs, which arise as approximations of more general DPPs. The algorithms are implemented and published as open source software.

MSC:

62-08 Computational methods for problems pertaining to statistics
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62M30 Inference from spatial processes
65D20 Computation of special functions and constants, construction of tables

Software:

dppsim; catamari; spatstat; R

References:

[1] Affandi, R.H., Fox, E., Taskar, B.: Approximate inference in continuous determinantal processes. In: Advances in Neural Information Processing Systems (2013), pp. 1430-1438
[2] Affandi, R.H., Kulesza, A., Fox, E., Taskar, B.: Nystrom approximation for large-scale determinantal processes. In: Carvalho, C.M., Ravikumar, P. (eds.) Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics (Scottsdale, Arizona), Proceedings of Machine Learning Research, PMLR, vol. 31, pp. 85-98 (2013)
[3] Baddeley, AJ; Rubak, E.; Turner, R., Spatial Point Patterns: Methodology and Applications with R. Interdisciplinary Statistics (2015), Boca Raton: Chapman & Hall/CRC, Boca Raton · Zbl 1357.62001 · doi:10.1201/b19708
[4] Bardenet, R.; Hardy, A., Monte Carlo with determinantal point processes, Ann. Appl. Probab., 30, 1, 368-417 (2020) · Zbl 1491.65007 · doi:10.1214/19-AAP1504
[5] Belhadji, A., Bardenet, R., Chainais, P.: Kernel quadrature with DPPs. In: Advances in Neural Information Processing Systems, pp. 12927-12937 (2019)
[6] Biscio, C.; Lavancier, F., Quantifying repulsiveness of determinantal point processes, Bernoulli, 22, 2001-2028 (2016) · Zbl 1343.60058 · doi:10.3150/15-BEJ718
[7] Biscio, C.; Lavancier, F., Contrast estimation for parametric stationary determinantal point processes, Scand. J. Stat., 44, 204-229 (2017) · Zbl 1361.60034 · doi:10.1111/sjos.12249
[8] Bremer, J., On the numerical evaluation of the prolate spheroidal wave functions of order zero, Appl. Comput. Harmon. Anal., 60, 53-76 (2022) · Zbl 1496.65034 · doi:10.1016/j.acha.2022.02.002
[9] Coeurjolly, J.-F., Lavancier, F.: Understanding spatial point patterns through intensity and conditional intensities. In: Coupier, D. (ed.) Highlights in Stochastic Geometry, Lecture Notes in Mathematics, vol. 2237, pp. 45-85. Springer (2019)
[10] Coeurjolly, J-F; Mazoyer, A.; Amblard, P-O, Monte Carlo integration of non-differentiable functions on \({[0,1]^{\iota }}, \iota =1,\dots , d\), using a single determinantal point pattern defined on \({[0,1]^d}\), Electron. J. Stat., 15, 2, 6228-6280 (2021) · Zbl 1483.60072 · doi:10.1214/21-EJS1929
[11] Decreusefond, L.; Flint, I.; Privault, N.; Torrisi, GL; Peccati, G.; Reitzner, M., Determinantal point processes, Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Itô Chaos Expansions and Stochastic Geometry, 311-342 (2016), Cham: Springer, Cham · Zbl 1528.60045 · doi:10.1007/978-3-319-05233-5_10
[12] Decreusefond, L.; Flint, I.; Vergne, A., A note on the simulation of the Ginibre point process, J. Appl. Probab., 52, 4, 1003-1012 (2015) · Zbl 1334.60081 · doi:10.1239/jap/1450802749
[13] Deng, N.; Zhou, W.; Haenggi, M., The Ginibre point process as a model for wireless networks with repulsion, IEEE Trans. Wirel. Commun., 14, 1, 107-121 (2014) · doi:10.1109/TWC.2014.2332335
[14] Derezinski, M., Calandriello, D., Valko, M.: Exact sampling of determinantal point processes with sublinear time preprocessing. In: Advances in Neural Information Processing Systems. Curran Associates, Inc., vol. 32, pp. 11546-11558 (2019)
[15] Gillenwater, J., Kulesza, A., Mariet, Z., Vassilvtiskii, S.: A tree-based method for fast repeated sampling of determinantal point processes. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning (Long Beach, California), Proceedings of Machine Learning Research, vol. 97, pp. 2260-2268 (2019)
[16] Ginibre, J., Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys., 6, 3, 440-449 (1965) · Zbl 0127.39304 · doi:10.1063/1.1704292
[17] Goldman, A., The palm measure and the Voronoi tessellation for the Ginibre process, Ann. Appl. Probab., 20, 1, 90-128 (2010) · Zbl 1197.60047 · doi:10.1214/09-AAP620
[18] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press (2014) · Zbl 0918.65002
[19] Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics. Springer (2008) · Zbl 1220.42001
[20] Greengard, P., Serkh, K.: On generalized prolate spheroidal functions. arXiv:1811.02733 (2018)
[21] Hough, JB; Krishnapur, M.; Peres, Y.; Virág, B., Determinantal processes and independence, Probab. Surv., 3, 206-229 (2006) · Zbl 1189.60101 · doi:10.1214/154957806000000078
[22] Kulesza, A.; Taskar, B., Determinantal point processes for machine learning, Found. Trends Mach. Learn., 5, 123-286 (2012) · Zbl 1278.68240 · doi:10.1561/2200000044
[23] Launay, C.; Galerne, B.; Desolneux, A., Exact sampling of determinantal point processes without eigendecomposition, J. Appl. Probab., 57, 4, 1198-1221 (2020) · Zbl 1472.60085 · doi:10.1017/jpr.2020.56
[24] Lavancier, F., Møller, J., Rubak, E.: Determinantal point process models and statistical inference: extended version. arXiv:1205.4818v5 (2014) · Zbl 1414.62403
[25] Lavancier, F.; Møller, J.; Rubak, E., Determinantal point process models and statistical inference, J. R. Stat. Soc. Ser. B (Stat. Methodol.), 77, 853-877 (2015) · Zbl 1414.62403 · doi:10.1111/rssb.12096
[26] Lavancier, F.; Poinas, A.; Waagepetersen, R., Adaptive estimating function inference for nonstationary determinantal point processes, Scand. J. Stat., 48, 1, 87-107 (2021) · Zbl 1467.62157 · doi:10.1111/sjos.12440
[27] Lederman, R.R.: Numerical algorithms for the computation of generalized prolate spheroidal functions. arXiv:1710.02874 (2017)
[28] Li, C., Sra, S., Jegelka, S.: Fast mixing Markov chains for strongly Rayleigh measures, DPPs, and constrained sampling. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc., pp. 4188-4196 (2016)
[29] Lyons, R.: Determinantal probability: basic properties and conjectures. In: Proceedings of the International Congress of Mathematicians, Seoul, Korea IV, pp. 137-161 (2014) · Zbl 1373.60087
[30] Macchi, O., The coincidence approach to stochastic point processes, Adv. Appl. Probab., 7, 83-122 (1975) · Zbl 0366.60081 · doi:10.2307/1425855
[31] Miyoshi, N.; Shirai, T., A cellular network model with Ginibre configured base stations, Adv. Appl. Probab., 46, 3, 832-845 (2014) · Zbl 1330.60066 · doi:10.1239/aap/1409319562
[32] Møller, J., O’Reilly, E.: Couplings for determinantal point processes and their reduced Palm distributions with a view to quantifying repulsiveness. J. Appl. Probab. 58(2), 469-483 (2021). doi:10.1017/jpr.2020.101 · Zbl 1476.60087
[33] Møller, J.; Waagepetersen, R., Statistical Inference and Simulation for Spatial Point Processes (2004), Boca Raton: Chapman and Hall/CRC, Boca Raton · Zbl 1044.62101
[34] Moore, IC; Cada, M., Prolate spheroidal wave functions, an introduction to the Slepian series and its properties, Appl. Comput. Harmon. Anal., 16, 3, 208-230 (2004) · Zbl 1048.65027 · doi:10.1016/j.acha.2004.03.004
[35] Osipov, A., Rokhlin, V., Xiao, H.: Prolate spheroidal wave functions of order zero. In: Springer Series in Applied Mathematics Science, vol. 187 (2013) · Zbl 1287.65015
[36] Poulson, J., High-performance sampling of generic determinantal point processes, Philos. Trans. R. Soc. A, 378, 2166, 20190059 (2020) · Zbl 1470.60132 · doi:10.1098/rsta.2019.0059
[37] R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2022)
[38] Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes. J. Funct. Anal. 205, 414-463 (2003) · Zbl 1051.60052
[39] Shkolnisky, Y., Prolate spheroidal wave functions on a disc-integration and approximation of two-dimensional bandlimited functions, Appl. Comput. Harmon. Anal., 22, 2, 235-256 (2007) · Zbl 1117.65041 · doi:10.1016/j.acha.2006.07.002
[40] Slepian, D., Prolate spheroidal wave functions, Fourier analysis and uncertainty-IV: extensions to many dimensions; generalized prolate spheroidal functions, Bell Syst. Tech. J., 43, 6, 3009-3057 (1964) · Zbl 0184.08604 · doi:10.1002/j.1538-7305.1964.tb01037.x
[41] Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty-I. Bell Syst. Tech. J. 40(1), 43-63 (1961) · Zbl 0184.08601
[42] Tremblay, N.; Barthelmé, S.; Usevich, K.; Amblard, P-O, Extended l-ensembles: a new representation for determinantal point processes, Ann. Appl. Probab., 33, 1, 613-640 (2023) · Zbl 1527.60038 · doi:10.1214/22-AAP1824
[43] Williams, CK; Rasmussen, CE, Gaussian Processes for Machine Learning (2006), Cambridge: MIT Press, Cambridge · Zbl 1177.68165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.